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Abstract. Mathai [M] has conjectured that the Cheeger-Gromov invariant ρ(2) = η(2) − η

is a homotopy invariant of closed manifolds with torsion-free fundamental group. In this
paper we prove this statement for closed manifolds M when the rational Borel conjecture is
known for Γ = π1(M), i.e. the assembly map α : H∗(BΓ, Q) → L∗(Γ)⊗Q is an isomorphism.
Our discussion evokes the theory of intersection homology and results related to the higher
signature problem.

Let M be a closed, oriented Riemannian manifold of dimension 4k − 1, with k ≥ 2. In [Ma]
Mathai proves that the Cheeger-Gromov invariant ρ(2) ≡ η(2) − η is a homotopy invariant of
M if Γ = π1(M) is a Bieberbach group. In the same work, he conjectures that ρ(2) will be a
homotopy invariant for all such manifolds M whose fundamental group Γ is torsion-free and
discrete. This conjecture is verified by Keswani [K] when Γ is torsion-free and the Baum-Connes
assembly map µmax : K0(BΓ) → K0(C∗Γ) is an isomorphism. Yet it is now known that µmax

fails to be an isomorphism for groups satisfying Kazhdan’s property T . This paper improves
on Keswani’s result by showing that Mathai’s conjecture holds for torsion-free groups satisfying
the rational Borel conjecture, for which no counterexamples have been found.

As a consequence of a theorem of Hausmann [H], for every compact odd-dimensional oriented
manifold M with fundamental group Γ, there is a manifold W with boundary such that Γ injects
into G = π1(W ) and ∂W = rM for some multiple rM of M . Using this result, the author and
Weinberger construct in [CW] a well-defined Hirzebruch-type invariant for M4k−1 given by

τ(2)(M) =
1
r

( sig G
(2)(W̃ )− sig (W )),

where W̃ is the universal cover of W . The map sig G
(2) is a real-valued homomorphism on the

L-theory group L4k(G) given by sig G
(2)(V ) = dimG(V +)− dimG(V −) for any quadratic form V ,

considered as an `2(G)-module. This invariant τ(2) is in general a diffeomorphism invariant, but
is not a homotopy invariant when π1(M) is not torsion-free [CW]. It is now also known that τ(2)

coincides with ρ(2) by the work of Lück and Schick [LS].
The purpose of this paper is to show that the diffeomorphism invariant τ(2), and subsequently

ρ(2), is actually a homotopy invariant of M4k−1 if the fundamental group Γ = π1(M) satisfies
the rational Borel conjecture, which states that the assembly map α : H∗(BΓ, Q) → L∗(Γ)⊗Q is
an isomorphism if Γ is torsion-free. We include in our discussion some background in L-theory
and intersection homology.
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Introduction

The classical work on cobordism by Thom implies that every compact odd-dimensional
oriented manifold M has a multiple rM which is the boundary of an oriented manifold W .
Hausmann [H] showed furthermore that, for every such M with fundamental group Γ, there is
a manifold W such that ∂W = rM , for some multiple rM of M , with the additional property
that the inclusion M ↪→ W induces an injection Γ ↪→ π1(W ). For such a manifold M4k−1 with
fundamental group Γ, a higher “Hirzebruch type” real-valued function τ(2) is defined in [CW] in
the following manner:

τG
(2)(M) =

1
r

( sig G
(2)(W̃ )− sig (W )),

where G = π1(W ) and W̃ is the universal cover of W .
To see that this quantity can be made independent of (W,G), we consider any injection

G ↪→ G′. Let WG′ be the G′-space induced from the G-action on W̃ to G′. Now define

τG′

(2)(M) =
1
r

( sig G′

(2)(WG′)− sig (WG′/G′)).

Since W̃ is simply the G-cover WG of W and the quotient WG′/G′ is clearly diffeomorphic to
W , we note that this definition of τG′

(2) is consistent with the above definition of τG
(2). However,

by the Γ-induction property of Cheeger-Gromov [CG, page 8, equation (2.3)], we have

τG′

(2)(M) = 1
r ( sig G′

(2)(WG′)− sig (WG′/G′))

= 1
r ( sig G

(2)(WG)− sig (W ))

= τG
(2)(M).

So from G one can pass to any larger group G′ without changing the value of this quantity.
Given two manifolds W and W ′ with the required bounding properties, we can use the larger
group G′ = π1(W )∗Γ π1(W ′), which contains both fundamental groups π1(W ) and π1(W ′). The
usual Novikov additivity argument2 proves that τG

(2)(M) is independent of all choices [CW]. We
will henceforth refer to it as τ(2).

In [CW] we prove that τ(2) is a differential invariant but not a homotopy invariant of M4k−1

when π1(M) is not torsion-free. We will use ideas given by Weinberger in [W] which under the
same conditions proves the homotopy invariance of the twisted ρ-invariant ρα(M) = ηα(M) −
η(M), where α is any representation π1(M) → U(n). We supply brief expository remarks about
intersection homology and algebraic Poincaré complexes in Sections I and II before proving the
theorem in Section III.

2Novikov additivity, proved cohomologically in [AS], posits that signature is additive in the following sense: if

Y is an oriented manifold of dimension 2n with boundary X and Y ′ is another such manifold with boundary −X,

then sig (Y ∪X Y ′) = sig (Y ) + sig (Y ′). The additivity for sig G
(2) is easy to argue on the level of `2(G)-modules V

endowed with nonsingular bilinear form. To see that this additivity corresponds to appropriate manifold glueings,

we refer the reader to [F1] and [F2] of Farber, who puts L2 cohomology groups into a suitable framework in which

the same arguments can be repeated.



I. Intersection homology

Following Goresky and MacPherson, we say that a compact space X is a pseudomanifold
of dimension n if there is a compact subspace Σ with dim(Σ) ≤ n − 2 such that X − Σ is an
n-dimensional oriented manifold which is dense in X. We assume that our pseudomanifolds
come equipped with a fixed stratification by closed subspaces

X = Xn ⊃ Xn−1 = Xn−2 = Σ ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0

satisfying various neighborhood conditions (see [GM]). A perversity is a sequence of integers
p = (p2, p3, · · · , pn) such that p2 = 0 and pk+1 = pk or pk + 1. A subspace Y ⊂ X is said to be

(p, i)-allowable if dim(Y ) ≤ i and dim(Y ∩Xn−k) ≤ i− k + pk. We denote by ICp
i the subgroup

of i-chains ξ ∈ Ci(X) for which |ξ| is (p, i)-allowable and |∂ξ| is (p, i − 1)-allowable. If X is a
pseudomanifold of dimension n, then we define the i-th intersection homology group IHp

i (X)
to be the i-th homology group of the chain complex ICp

∗ (X). For any perversity p, we have
IHp

0 (X) ∼= Hn(X) and IHp
n(X) ∼= Hn(X).

Whenever p + q ≤ r, the intersection homology groups can be equipped with a unique
product ∩ : IHp

i (X) × IHq
j (X) → IHr

i+j−n(X) that respects the intersection homology classes
of dimensionally transverse pairs (C,D) of cycles. Let m = (0, 0, 1, 1, 2, 2, . . . , 2k−2, 2k−2, 2k−1)
be the middle perversity. If X is stratified with only strata of even codimension, and if dim(X) =
4k, then the intersection pairing

∩ : IHm
2k(X)× IHm

2k(X) → Z

is a symmetric and nonsingular form when tensored with Q. We can define the signature sig (X)
of X to be the signature of this quadratic form. If X is a manifold, this definition coincides with
the usual notion of signature.

If X is a pseudomanifold, we say that X is a Witt space if IHm
k (L, Q) = 0 whenever L2k is

the link of an odd-codimensional stratum of X. If Xq is a Witt space, there is a nondegenerate
rational pairing

IHm
i (X, Q)× IHm

j (X, Q) → Q

whenever i + j = q. If q = 4k > 0, then IHm
2k(X, Q) is a symmetric inner product space. In

this case, we define the Witt class w(X) of X to be the equivalence class of IHm
2k(X, Q) in the

Witt ring W (Q) of classes of symmetric rational inner product spaces. If q = 0, set w(X) to
be rank (H0(X, Q)) · 〈1〉, and set it to zero if q 6≡ 0 mod 4. If (X, ∂X) is a Witt space with
boundary, set w(X) = w(X̂), where X̂ = X ∪ cone(∂X). Let sig Q : W (Q) → Z be the signature
homomorphism developed by Milnor and Husemoller [MH]. We define the signature sig (X) to
the integer sig Q(w(X)). See [S].

Denote by ΩWitt
∗ the bordism theory based on Witt spaces; i.e. if Y is a Witt space, define

ΩWitt
n (Y ) to be the classes [X, f ], where X is an n-dimensional Witt space and f : X → Y a

continuous map, such that [X1, f1] ∼ [X2, f2] iff there is an (n + 1)-dimensional Witt space W

with ∂W = X1
∐

X2 and a map W → Y that restricts to f1 and f2 on the boundary. Witt
bordism enjoys the important properties that (1) there is a signature invariant defined on the



cycle level which is a cobordism invariant, and (2) the signature can be extended to relative
cycles (X, ∂X) so that it is additive.

Lemma 1: Let M1 and M2 be homotopy equivalent manifolds of the same dimension. Suppose
that their fundamental group Γ is torsion-free and satisfies the rational Borel conjecture. Then
there is rationally a Witt cobordism between M and M ′ over BΓ.

Proof: It is well-known that, if Γ is torsion-free and satisfies the Borel conjecture, then it satisfies
the Novikov conjecture, which asserts that, if f : M → BΓ is a map, then the generalized
Pontrjagin number (or “higher signature”)

f∗ (L(M) ∩ [M ]) ∈ H∗(BΓ, Q)

is an oriented homotopy invariant. Here L(M) is the Hirzebruch L-polynomial in terms of the
Pontrjagin classes, and [M ] is the fundamental class of M . Let fi : Mi → BΓ be the map
classifying the universal cover of Mi. We would like to show that [M1, f1] and [M2, f2] rationally
define the same class in ΩWitt

∗ (BΓ).
For a Witt space X, Siegel [S] constructs an L-class L(X) ∈ H∗(X, Q) that generalizes

the L-class of Goresky and MacPherson [GM], the latter of which is defined only on Whitney
stratified pseudomanifolds with even-codimensional strata. If f : X → BΓ is the universal cover
of X, then f∗(L(X)) ∈ H∗(BΓ, Q) coincides with the higher signature given above. In addition,
it is a bordism invariant in ΩWitt

∗ (BΓ). Rationally the Atiyah-Hirzebruch spectral sequence for
Witt cobordism collapses, so we obtain an isomorphism

i : ΩWitt
n (BΓ)⊗Q −→

⊕
k≥0

Hn−4k(BΓ, Q)

such that i([M,f ]) is the higher signature f∗(L(M) ∩ [M ]). But these signatures are homotopy
invariants by assumption. �

II. Algebraic Poincaré complexes

An n-dimensional Poincaré complex over a ring A with involution is an A-module chain com-
plex C with a collection of A-module morphisms φs : Cn−r+s → Cr such that the chain map φ0

is a chain equivalence inducing abstract Poincaré duality isomorphisms φ0 : Hn−r(C) → Hr(C).
As defined by Wall [Wa], an n-dimensional geometric Poincaré complex X with fundamental
group Γ is a finitely dominated CW-complex together with a fundamental class [X] ∈ Hn(X̃, Z)
such that cap product with [X] gives a family of ZΓ-module isomorphisms

∩ [X] : Hr(X̃) −→ Hn−r(X̃)

for 0 ≤ r ≤ n (there is additional business about an orientation group morphism w : Γ1(X) →
Z2 for which one should consult [Ran2]). An n-dimensional geometric Poincaré complex X

with fundamental group Γ naturally determines an n-dimensional symmetric Poincaré complex
(C(X̃), φ

X̃
) over ZΓ. Such symmetric complexes (as opposed to quadratic complexes, which



define lower L-theory) over a ring A can be assembled into an abelian group Ln(A) under
a cobordism relation defined by abstract Poincaré-Lefschetz duality [M,Ran1], with addition
given by

(C, φ) + (C ′, φ′) = (C ⊕ C ′, φ⊕ φ′) ∈ Ln(A).

For a more detailed discussion on algebraic Poincaré complexes and in particular the manner in
which algebraic Poincaré complexes are glued together along a common boundary, see [Ran3].

Lemma 2: Let M and M ′ be homotopy equivalent manifolds of the same dimension 4k−1 with
torsion-free fundamental group Γ. Suppose that Y is a rational Witt cobordism of M and M ′

over BΓ. If the Borel conjecture holds for Γ, then sig Γ
(2)(YΓ) = sig (Y ), where YΓ is the induced

Γ-cover of Y .

Proof: By the preceding lemma, there is a Witt cobordism between n copies of M and n copies of
M ′. Let Ch be the homotopy cylinder given by the homotopy equivalence h : M → M ′. Attach
n copies of Ch to the rational Witt cobordism Y to form a space X. This space is usually not a
pseudomanifold because the singular space is of codimension one, but it is an algebraic Poincaré
space. Notice that all of these spaces come equipped with a map to BΓ. Since upper and lower
L-theory coincide rationally, we may then consider X as an element of L∗(BΓ) ⊗ Q. Consider
then the composition of maps

ΩSO
∗ (BΓ)⊗Q −→ H∗(BΓ, Q) −→ L∗(Γ)⊗Q .

The first map is well known to be surjective, and the second is surjective by our assump-
tion that the Borel conjecture holds for Γ. Therefore there is a closed manifold X ′ with-
out boundary bordant to X as algebraic Poincaré complexes. Atiyah’s Γ-index theorem [A]
shows that sig Γ

(2)(X
′
Γ) = sig (X ′), so that the cobordism invariance of signature implies that

sig Γ
(2)(XΓ) = sig (X). For a topological proof of the Γ-index theorem for signature, see the

appendix of [CW].
By Novikov additivity, we may decompose the complex X to arrive at the equation

sig Γ
(2)(YΓ) + n · sig Γ

(2)(C
h
Γ) = sig (Y ) + n · sig (Ch).

By Novikov additivity, the homotopy cylinder Ch enjoys the convenient property that sig Γ
(2)(C

h
Γ) =

sig (Ch), so sig Γ
(2)(YΓ) = sig (Y ). �

III. The main theorem

Theorem: Let M be an oriented compact manifold of dimension 4k−1. If π1(M) is torsion-free,
then the real-valued quantity τ(2)(M) is a homotopy invariant.

Proof: Let M and M ′ be homotopy equivalent closed manifolds of dimension n = 4k− 1. There
are closed manifolds W and W ′ such that ∂W = rM and ∂W ′ = sM ′ with injecting fundamental
groups. Construct s copies of W and r copies of W ′ and attach rs Witt cobordisms Y between
the boundary components M and M ′. Call this space X with H = π1(X). Note that both



π1(W ) and π1(W ′) inject into H. Since the map ΩSO(BH)⊗Q → ΩWitt(BH)⊗Q is surjective
(see [Cu]), it follows that X is Witt cobordant to a smooth manifold X ′. Hence they share
the same signatures. Note that X ′ has the property that sig H

(2)(X
′
H) = sig (X ′), and hence

sig Γ
(2)(X

′
Γ) = sig (X ′) by Atiyah’s Γ-index theorem. By the observation above, we can then

conclude that sig Γ
(2)(XΓ) = sig (X).

By Novikov additivity, we can partition X along the original attachments to obtain

s · sig Γ
(2)(WΓ) + rs · sig Γ

(2)(YΓ)− r · sig Γ
(2)(WΓ) = s · sig (W ) + rs · sig (Y )− r · sig (W ′).

By Lemma 2, the cylindrical terms cancel, leaving

1
r

(
sig Γ

(2)(WΓ)− sig (W )
)

=
1
s

(
sig Γ

(2)(W
′
Γ)− sig (W ′)

)
.

Equivalently τ(2)(M) = τ(2)(M ′), so τ(2) is a homotopy equivalence. �

Remark: Given the identification of τ(2) and ρ(2), one can conjecture that ρ(2) is homotopy
invariant iff the fundamental group of M is torsion-free (see [CW]). However, recent work of
[NW] makes use of secondary invariants for groups with unsolvable word problems, which, a
fortiori, are not residually finite. Potentially, the results of this paper can have applications to
the geometry of certain moduli spaces.
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[Wa] C.T.C. Wall, Poincaré complexes. I. Ann. of Math. (2) 86 1967 213–245.

[W] S. Weinberger, Homotopy invariance of η-invariants. Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 15,

5362–5363.

106 Central Street, Wellesley College, Wellesley MA 02481


