(1) We say that a field \(L \) is \textit{algebraically closed} if every \(f \in L[x] \) splits over \(L \). We know, for example, that \(\mathbb{C} \) is algebraically closed. We say that \(L: K \) is an \textit{algebraic closure} of \(K \) if \(L: K \) is algebraic and \(L \) is algebraically closed. Prove that the following are equivalent about an extension \(L: K \).

(a) The extension \(L: K \) is an algebraic closure of \(K \);
(b) The extension \(L: K \) is algebraic, and every irreducible \(f \in K[x] \) splits over \(L \);
(c) The extension \(L: K \) is algebraic, and if \(L': L \) is algebraic then \(L = L' \).

Solution: (1 implies 2) Suppose that \(L: K \) is an algebraic closure. By definition it is algebraic. Let \(f \in K[x] \) be irreducible. Then \(f \in L[x] \) so it splits by assumption. Hence \(f \) splits over \(L \).

(2 implies 3) Suppose that \(L' \) is algebraic. Clearly \(L \subset L' \). Let \(\alpha \in L' \). Since \(L' \) is algebraic, there is an irreducible polynomial \(m \in K[x] \) that has \(\alpha \) as a zero. By assumption \(m \) splits over \(L \). Therefore \(\alpha \in L \), so \(L' \subset L \).

(3 implies 1) We know that \(L: K \) is algebraic. Let \(f \in L[x] \). Let \(L' \) be the splitting field of \(f \) over \(L \). Then \(L' \) is algebraic. By assumption we have \(L = L' \). Hence \(f \) splits over \(L \).

(2) Construct the normal closures \(N \) for the following extensions.

(a) \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q} \)
(b) \(\mathbb{Q}(\sqrt{3}) : \mathbb{Q} \)
(c) \(\mathbb{Z}_3(t) : \mathbb{Z}_3 \), where \(t \) is an indeterminate.

Solution:

(a) \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \)
(b) \(\mathbb{Q}(\sqrt{3}, e^{2\pi i/5}) \)
(c) \(\mathbb{Z}_3(t) \)

(3) For each of these algebraic extensions, find the normal closure \(M \) and determine an appropriate collection \(S \) for which \(M \) is the splitting field over \(K \) (this means that each polynomial in the collection splits in \(M \)).

(a) \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots) : \mathbb{Q} \)
(b) \(\mathbb{Q}(e^{2\pi i/3}, e^{2\pi i/5}, e^{2\pi i/7}, e^{2\pi i/11}, \ldots) : \mathbb{Q} \)
(c) \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots) : \mathbb{Q} \)

Solution:

(a) The normal closure is \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots) \) and \(S = \{x^2 - 2, x^2 - 3, x^2 - 5, x^2 - 7, \ldots\} \)
(b) The normal closure is \(\mathbb{Q}(e^{2\pi i/3}, e^{2\pi i/5}, e^{2\pi i/7}, e^{2\pi i/11}, \ldots) \) and the corresponding \(S \) is given by \(S = \{x^3 - 1, x^5 - 1, x^7 - 1, x^{11} - 1, \ldots\} \).
(c) The normal closure is \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \sqrt{13}, \ldots) \) and \(S = \{x^2 - 2, x^3 - 2, x^5 - 2, \ldots\} \).

(4) Each of the following statements is false. Disprove each of them by providing a counterexample or a counterproof.

(a) Every finite extension is separable.
(b) Every normal extension \(L: K \) is the splitting field of some polynomial \(f \in K[x] \).
(c) For all fields \(K \), if \(f \in K[x] \) and \(Df = 0 \), then \(f = 0 \).
(d) Every separable extension is normal.
(e) Every normal extension is separable.

Solution:

(a) Consider \(\mathbb{Z}_2(u)(t) : \mathbb{Z}_2(u) \), where \(t \) is a root of \(x^2 - u \in \mathbb{Z}_2(u)[x] \). This finite extension is not separable.
(b) The extension \(\mathbb{Q}(t) : \mathbb{Q} \) is not the splitting field of any polynomial in \(\mathbb{Q}[x] \).
(c) Let \(K = \mathbb{Z}_2 \). Then \(f = x^2 \) is not zero but \(Df = 0 \).
(d) The extension \(\mathbb{Q}(\sqrt{2}) : \mathbb{Q} \) is separable but not normal.
(e) The extension $\mathbb{Z}_2(u)(t) : \mathbb{Z}_2(u)$, where t is a root of $x^2 - u \in \mathbb{Z}_2(u)[x]$, is normal but not separable.

(5) Suppose that $L : K$ is an algebraic extension. Prove that there is a greatest intermediate field M for which $M : K$ is normal (assume there is at least one such M). In your proof, you should give a definition of the notion of “greatest”.

Solution: For all α in some indexing set I, let M_α be an intermediate subfield of $L : K$ which is normal over K. Certainly I is nonempty because K is normal over itself. Let M be the intersection of all subfields of L that contain all the M_α. We claim that M is also normal over K. For each $\alpha \in I$, let $S_\alpha \subseteq K[x]$ be a collection of polynomial which M_α is the splitting field. Let N be the splitting field of $S = \bigcup_{\alpha \in I} S_\alpha$. We will show that $M = N$. Certainly N contains all the M_α by the minimality of M_α. Therefore N contains M by the minimality of M. But certainly the polynomials of S split over M, so by the minimality of N we have $N \subseteq M$. Therefore $N = M$ and M is normal over K.

(6) Let $L : K$ be an algebraic field extension and let M_1 and M_2 be intermediate fields normal over K. Define $K(M_1, M_2)$ to be the smallest subfield of L containing both M_1 and M_2. Prove that both $K(M_1, M_2) : K$ and $M_1 \cap M_2 : K$ are normal extensions.

Solution: The proof of the first part is practically identical to the proof of the last problem. Now let $f \in K[x]$ be irreducible with a root α in $M_1 \cap M_2$. Then $\alpha \in M_1$. Since $M_1 : K$ is normal, all the roots of f lie in M_1. Similarly, all the roots of f lie in M_2. Therefore $M_1 \cap M_2$ contains all the roots of f, and is therefore normal over K.

(7) Suppose that f is a polynomial in $K[x]$ of degree n and either $\text{char } K = 0$ or $\text{char } K > n$. Suppose that $\alpha \in K$. Prove that

$$f = f(\alpha) + Df(\alpha)(x-\alpha) + \frac{D^2f(\alpha)}{2!}(x-\alpha)^2 + \cdots + \frac{D^n f(\alpha)}{n!}(x-\alpha)^n.$$

(Hint: Proceed by induction on n, using the following fact: If f has degree $k + 1$, then α is a root of the polynomial $f - f(\alpha)$, so $f - f(\alpha) = (x-\alpha)g$, for some g of degree k.)

Solution: Certainly the statement is true when $n = 0$, in which case f is just a constant function, so $f = f(\alpha)$. Suppose that the statement is true for any polynomial of degree k. Let $f \in K[x]$ with degree $k + 1$. Then α is a root of the polynomial $f - f(\alpha)$, so $f - f(\alpha) = (x-\alpha)g$, for some g of degree k. By the induction hypothesis, we know that

$$g = g(\alpha) + Dg(\alpha)(x-\alpha) + \frac{D^2g(\alpha)}{2!}(x-\alpha)^2 + \cdots + \frac{D^kg(\alpha)}{k!}(x-\alpha)^k.$$

Therefore

$$f = f(\alpha) + g(\alpha)(x-\alpha) + Dg(\alpha)(x-\alpha)^2 + \frac{D^2g(\alpha)}{2!}(x-\alpha)^3 + \cdots + \frac{D^kg(\alpha)}{k!}(x-\alpha)^{k+1}.$$

It suffices to show that, for all $i = 1, \ldots, k$, we have $\frac{D^i g(\alpha)}{i!} = \frac{D^{i+1} f(\alpha)}{(i+1)!}$, or $(i + 1)D^i g(\alpha) = D^{i+1} f(\alpha)$. We claim that, for all $i \in \{1, \ldots, k\}$, we have $D^{i+1} f = (i + 1)D^i g + (x-\alpha)D^{i+1} g$. We proceed by induction. Clearly since $f = f(\alpha) + (x-\alpha)g$, we have $Df = g + (x-\alpha)Df$, so the statement is true for $i = 0$. Assume that, for some $j \in \{0, \ldots, k - 1\}$, we have $D^{j+1} f = (j + 1)D^j g + (x-\alpha)D^{j+1} g$. Hence

$$D^{j+2} f = (j + 1)D^{j+1} g + D^{j+1} g + (x-\alpha)D^{j+2} g = (j + 2)D^{j+1} g + (x-\alpha)D^{j+2} g.$$

Hence the equation is true for all i. Therefore $D^{i+1} f(\alpha) = (i + 1)D^i g(\alpha)$, as desired.

(8) Suppose that f is a polynomial in $K[x]$ of degree n and either $\text{char } K = 0$ or $\text{char } K > n$. Prove that α is a root of multiplicity r iff

$$f(\alpha) = Df(\alpha) = \cdots = D^{r-1} f(\alpha) = 0.$$
and \(D^r f(\alpha) \neq 0 \). (Hint: Proceed by induction on \(r \).)

Solution: Suppose that \(\alpha \) has multiplicity \(r \). Then \(f = (x - \alpha)^r g \) for some \(g \in K[x] \) with \(g(\alpha) \neq 0 \). For all \(i \), we have

\[
D^i f = \sum_{j=0}^{i} \binom{i}{j} D^i (x - \alpha)^r D^{i-j} g.
\]

Now \(D^i (x - \alpha)^r = r(r - 1) \cdots (r + 1 - j)x^{r-j} \). Hence \(D^i f(\alpha) = 0 \) if \(i \leq r \) and

\[
D^r f = \sum_{j=0}^{r} \binom{r}{j} D^r (x - \alpha)^r D^{r-j} g.
\]

Therefore \(D^r f(\alpha) = (r + 1)! g(\alpha) \neq 0 \).

To prove the converse, proceed by induction on \(r \). Certainly the statement is true if \(r = 1 \). In this case \(f(\alpha) = 0 \) and \(Df(\alpha) \neq 0 \). Then \(f = (x - \alpha)g \) for some \(g \in K[x] \) and \(Df = g + (x - \alpha)Dg \), so \(g(\alpha) = Df(\alpha) \neq 0 \), so \(f \) has multiplicity 1. Suppose that \(f(\alpha) = Df(\alpha) = \cdots = D^{k-1} f(\alpha) = 0 \) and \(D^k f(\alpha) \neq 0 \).

Then for all \(i \in \mathbb{Z}_{\geq 1} \), we have

\[
D^i f = iD^{i-1} g + (x - \alpha)D^i g
\]

(see the previous problem). Hence for \(i = 1, \ldots, k-1 \), we have \(g(\alpha) = Dg(\alpha) = \cdots = D^{k-2}g(\alpha) \) and \(D^{k-1}g(\alpha) \neq 0 \). By induction we know that \(g \) has a root \(\alpha \) of multiplicity \(k-1 \). Since \(f = (x - \alpha)g \), we know that \(f \) has a root \(\alpha \) of multiplicity \(k \).

(9) (a) Show that, if \(f \in K[x] \) is irreducible and the characteristic of \(K \) is \(p \) for some prime \(p \), then \(f \) is inseparable iff \(f = a_0 + a_1 x^p + \cdots + a_n x^{np} \) for some \(n \in \mathbb{Z}_{\geq 1} \) and \(a_0, \ldots, a_n \in K \).

(b) Suppose that \(L: K \) is a field extension and \(\text{char } K = p > 0 \). If \([L: K]\) is coprime to \(p \), then prove that \(L: K \) is separable.

(c) We say that a field \(K \) is perfect if every irreducible \(f \in K[x] \) is separable. Prove that any algebraic extension of a perfect field is also perfect.

Solution:

(a) If \(f \) is inseparable, then there is \(m \in K[x] \) with \(\deg m \geq 1 \) such that \(m|f \) and \(m|Df \). But \(f \) is irreducible, so \(f \) and \(m \) are associates, so \(f|Df \), so \(Df = 0 \) and \(f \) has the form given above. Conversely is obvious: take \(m = f \).

(b) Suppose that \(L: K \) is inseparable. Then there is an \(\alpha \in L \) whose minimal polynomial is of the form \(f = a_0 + a_1 x^p + a_2 x^{2p} + \cdots + a_n x^{np} \), for some \(n \in \mathbb{Z}_{\geq 1} \) and \(a_0, \ldots, a_n \in K \). Since \(f \) is irreducible, we know that \(K(\alpha): K \) has degree \(np \). Therefore \([L: K]\) is divisible by \(np \), and hence divisible by \(p \) (we are assuming that the extension is finite), contradicting the fact that \([L: K]\) is coprime to \(p \).

(c) Let \(L: K \) be an algebraic extension and let \(K \) be perfect. Let \(f \in L[x] \) be irreducible with splitting field \(M \). Consider a root \(\alpha_1 \in M \) of \(f \). Hence \(f \) is the minimum polynomial of \(\alpha_1 \) over \(L \). Since \(L: K \) is algebraic, we know that \(\alpha_1 \) is algebraic over \(K \). Let \(g \) be the minimum polynomial of \(\alpha_1 \) over \(K \). Then \(f|g \). Since \(K \) is perfect, the polynomial \(g \) is separable, so \(g = (x - \alpha_1) \cdots (x - \alpha_n) \) in \(M[x] \), where all the \(\alpha_i \) are distinct. Then \(f \) splits in \(M[x] \) into a product of distinct linear factors as well, so \(f \) is separable. Therefore \(L \) is perfect.