(1) (4 pts/part) Determine the Galois group $\text{Gal}(L/K)$ for each of these extensions $L: K$. Define the elements as precisely as possible. Here you should not assume that if $L: K$ is finite and normal, then the number of elements in $\text{Gal}(L/K)$ is $[L: K]$.
 (a) $\mathbb{Q}(\sqrt{7}) : \mathbb{Q}$
 (b) $\mathbb{Q}(\sqrt{2}) : \mathbb{Q}$
 (c) $\mathbb{Q}(\sqrt[4]{2}, \sqrt[5]{7}) : \mathbb{Q}$
 (d) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) : \mathbb{Q}$
 (e) $\mathbb{Z}_2(\zeta) : \mathbb{Z}_2$, where ζ is a root of $x^2 + x + 1 \in \mathbb{Z}_2[x]$

Solution:
 (a) We have $\text{Gal}(L/K) \cong \mathbb{Z}_2 = \{\sigma_1, \sigma_2\}$, where $\sigma_1 : \sqrt{7} \mapsto -\sqrt{7}$ and $\sigma_2 : \sqrt{7} \mapsto \sqrt{7}$.
 (b) We have $\text{Gal}(L/K) \cong \{e\}$ consisting of just the identity map.
 (c) We have $\text{Gal}(L/K) \cong \mathbb{Z}_4 = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$. Let $\omega = e^{2\pi i/5}$. Then the automorphisms are determined by $\sigma_1 : \omega \mapsto \omega$, $\sigma_3 : \omega \mapsto \omega^2$, $\sigma_4 : \omega \mapsto \omega^3$.
 (d) We have $\text{Gal}(L/K) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}$, where the eight maps are given by the combinations $\sqrt{2} \mapsto \pm \sqrt{2}$, $\sqrt{3} \mapsto \pm \sqrt{3}$, $\sqrt{5} \mapsto \pm \sqrt{5}$.
 (e) We have $\text{Gal}(L/K) \cong \mathbb{Z}_2 = \{\sigma_1, \sigma_2\}$, where $\sigma_1 : \zeta \mapsto \zeta$ and $\sigma_2 : \zeta \mapsto \zeta + 1$.

(2) (3 pts/part) Let $\gamma = \sqrt{2 + \sqrt{2}}$. The purpose of this problem is to compute the Galois group of $\mathbb{Q}(\gamma) : \mathbb{Q}$.

(a) Compute the minimum polynomial $f \in \mathbb{Q}[x]$ of γ. Be sure to verify that f is indeed irreducible. Compute all the roots of f.

(b) Let β be the other positive root of f. By showing that $\beta = \frac{\sqrt{2}}{\gamma}$, prove that $\mathbb{Q}(\gamma)$ is a splitting field for f over \mathbb{Q}.

(c) By considering the order of the \mathbb{Q}-automorphism α satisfying $\alpha(\gamma) = \beta$ (we know there is one by Theorem 7), prove that $\text{Gal}(\mathbb{Q}(\gamma)/\mathbb{Q}) \cong \mathbb{Z}_4$.

Solution:
 (a) We know that $\gamma^2 = 2 + \sqrt{2}$, so $(\gamma^2 - 2)^2 = 2$, or $\gamma^2 - 4\gamma + 2 = 0$. Therefore $f = x^2 - 4x + 2$ has γ as a root. Since f is irreducible by Eisenstein’s criterion, it is the minimum polynomial of γ. By the quadratic equation, one can easily see that the four roots of f are given by $\pm\sqrt{2} \pm \sqrt{2}$.

(b) Let $\beta = \sqrt{2} - \sqrt{2}$. Note that $\gamma\beta = \sqrt{2 + \sqrt{2}} \sqrt{2 - \sqrt{2}} = \sqrt{2}$, so it follows that $\beta = \frac{\sqrt{2}}{\gamma}$. Clearly $\sqrt{2} \in \mathbb{Q}(\gamma)$, so $\beta \in \mathbb{Q}(\gamma)$ as well. Since the roots of f are $\pm\gamma$ and $\pm\beta$, it follows that $\mathbb{Q}(\gamma)$ is the splitting field of f.

(c) There are four elements of the Galois group $G = \text{Gal}(\mathbb{Q}(\gamma)/\mathbb{Q})$. Consider $\alpha \in G$ determined by $\gamma \mapsto \beta$. Then $\alpha(\sqrt{2}) = -\sqrt{2}$. Therefore $\alpha^2(\gamma) = \alpha(\beta) = \alpha(\sqrt{2}/\gamma) = -\sqrt{2}/\beta = -\gamma$. Therefore the order of α is 4, so $G \cong \mathbb{Z}_4$.

(3) Given $f \in K[x]$, we say the that Galois group of f is the Galois group of the extension $L : K$ where L is the splitting field of f over K. Consider $f = (x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$.

(a) (3 pts) Determine the Galois group G of f, listing all its elements using the \mapsto notation.

(b) (4 pts) For each subgroup H of G, compute H^1.

Solution:
(a) The roots of \(f \) are given by \(\pm \sqrt{2}, \pm \sqrt{3} \) and \(\pm \sqrt{5} \). Every automorphism in the Galois group of \(f \) is determined by its behavior on \(\sqrt{2}, \sqrt{3} \) and \(\sqrt{5} \). The eight automorphisms of \(f \) are given by

\[
\begin{align*}
\sigma_1 &: \; \sqrt{2} \mapsto \sqrt{2}, \quad \sqrt{3} \mapsto \sqrt{3}, \quad \sqrt{5} \mapsto \sqrt{5}, \quad (0, 0, 0); \\
\sigma_2 &: \; \sqrt{2} \mapsto -\sqrt{2}, \quad \sqrt{3} \mapsto \sqrt{3}, \quad \sqrt{5} \mapsto \sqrt{5}, \quad (1, 0, 0); \\
\sigma_3 &: \; \sqrt{2} \mapsto \sqrt{2}, \quad \sqrt{3} \mapsto -\sqrt{3}, \quad \sqrt{5} \mapsto \sqrt{5}, \quad (0, 1, 0); \\
\sigma_4 &: \; \sqrt{2} \mapsto \sqrt{2}, \quad \sqrt{3} \mapsto \sqrt{3}, \quad \sqrt{5} \mapsto -\sqrt{5}, \quad (0, 0, 1); \\
\sigma_5 &: \; \sqrt{2} \mapsto -\sqrt{2}, \quad \sqrt{3} \mapsto -\sqrt{3}, \quad \sqrt{5} \mapsto \sqrt{5}, \quad (1, 1, 0); \\
\sigma_6 &: \; \sqrt{2} \mapsto \sqrt{2}, \quad \sqrt{3} \mapsto -\sqrt{3}, \quad \sqrt{5} \mapsto -\sqrt{5}, \quad (0, 1, 1); \\
\sigma_7 &: \; \sqrt{2} \mapsto -\sqrt{2}, \quad \sqrt{3} \mapsto \sqrt{3}, \quad \sqrt{5} \mapsto -\sqrt{5}, \quad (1, 0, 1); \\
\sigma_8 &: \; \sqrt{2} \mapsto -\sqrt{2}, \quad \sqrt{3} \mapsto -\sqrt{3}, \quad \sqrt{5} \mapsto -\sqrt{5}, \quad (1, 1, 1).
\end{align*}
\]

The last column gives the corresponding element of \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \).

(b) There are a total of 16 subgroups of the Galois group.

<table>
<thead>
<tr>
<th>(H)</th>
<th>(H^\dagger)</th>
<th>(H)</th>
<th>(H^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle \sigma_1 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}))</td>
<td>(\langle \sigma_2, \sigma_3 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{5}))</td>
</tr>
<tr>
<td>(\langle \sigma_2 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{2}, \sqrt{5}))</td>
<td>(\langle \sigma_2, \sigma_4 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{3}))</td>
</tr>
<tr>
<td>(\langle \sigma_3 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{2}, \sqrt{3}))</td>
<td>(\langle \sigma_3, \sigma_4 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{2}))</td>
</tr>
<tr>
<td>(\langle \sigma_4 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{5}, \sqrt{6}))</td>
<td>(\langle \sigma_2, \sigma_6 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{15}))</td>
</tr>
<tr>
<td>(\langle \sigma_5 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{2}, \sqrt{15}))</td>
<td>(\langle \sigma_3, \sigma_7 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{10}))</td>
</tr>
<tr>
<td>(\langle \sigma_6 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{3}, \sqrt{10}))</td>
<td>(\langle \sigma_1, \sigma_5 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{6}))</td>
</tr>
<tr>
<td>(\langle \sigma_7 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{3}, \sqrt{15}))</td>
<td>(\langle \sigma_5, \sigma_6 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{30}))</td>
</tr>
<tr>
<td>(\langle \sigma_8 \rangle)</td>
<td>(\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}))</td>
<td>(\langle \sigma_1, \sigma_2, \sigma_3 \rangle)</td>
<td>(\mathbb{Q})</td>
</tr>
</tbody>
</table>

(4) (4 pts/part) Find the Galois group of \(x^3 - 5 \) over the following fields. List all the subgroups \(H \) and the fixed field \(H^\dagger \).

(a) \(\mathbb{Q} \)

(b) \(\mathbb{Z}_3 \)

(c) \(\mathbb{Z}_7 \)

Solution:

(a) The Galois group is \(S_3 \), each automorphism determined by its behavior on \(\sqrt[3]{5} \) and \(\omega = e^{2\pi i/3} \). The six elements are as follows:

\[
\begin{align*}
\sigma_1 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5}, \quad \omega \mapsto \omega; \\
\sigma_2 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5} \omega, \quad \omega \mapsto \omega; \\
\sigma_3 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5} \omega^2, \quad \omega \mapsto \omega; \\
\sigma_4 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5}, \quad \omega \mapsto \omega^2; \\
\sigma_5 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5} \omega, \quad \omega \mapsto \omega^2; \\
\sigma_6 &: \; \sqrt[3]{5} \mapsto \sqrt[3]{5} \omega^2, \quad \omega \mapsto \omega^2.
\end{align*}
\]

There are six subgroups of \(S_3 \).

<table>
<thead>
<tr>
<th>(H)</th>
<th>(H^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle \sigma_1 \rangle)</td>
<td>(\mathbb{Q}(\sqrt[3]{5}, \omega))</td>
</tr>
<tr>
<td>(\langle \sigma_2 \rangle)</td>
<td>(\mathbb{Q}(\omega))</td>
</tr>
<tr>
<td>(\langle \sigma_3 \rangle)</td>
<td>(\mathbb{Q}(\sqrt[3]{5}))</td>
</tr>
<tr>
<td>(\langle \sigma_4 \rangle)</td>
<td>(\mathbb{Q}(\sqrt[3]{5} \omega^2))</td>
</tr>
<tr>
<td>(\langle \sigma_5 \rangle)</td>
<td>(\mathbb{Q}(\sqrt[3]{5} \omega))</td>
</tr>
<tr>
<td>(\langle \sigma_6 \rangle)</td>
<td>(\mathbb{Q}(\sqrt[3]{5} \omega^2))</td>
</tr>
</tbody>
</table>

(b) Since \(f = (x + 1)^3 \), it follows that the Galois group is \(\langle e \rangle \) and \(\langle e \rangle^\dagger = \mathbb{Z}_3 \).
(c) Note first that f is irreducible over \mathbb{Z}_7. Let γ be a root. Then $f = (x - \gamma)(x - 2\gamma)(x - 4\gamma)$. Hence the Galois group is \mathbb{Z}_3. Hence $\langle e \rangle^1 = \mathbb{Z}_7(\gamma)$ and $\mathbb{Z}_3^1 = \mathbb{Z}_7$.