Uniform Continuity

Day 15

In Math 302, you likely gos duissed convegue
of a sequence of functions:
Det a Paintwill Convexment
Supply X, Y are topological spaces, and Y is a
metric space. Juppok to X31 for own
We say a function f: X->Y is a pointwike limit
of (f. f., f.,) if for all xEX we have
$(f_1(x), f_2(x), f_3(x), \dots)$ have limit $f(x)$. This means:

-fue S.	ang that	xeX fir	and All	any 2 n≥N	270, WC	me ca have	n find J(fn(x	N EIN), f(x)) <e.< th=""></e.<>
							what by Their	
D		· Agista	in lin	it do	esnt	NECISon	ly preserv	e continuity fn is 0 if XCI 1 if X=1

Can un Think of a new kind it convegence ro That limits of continuous finctions are continuous?	
Def'n (Uniform (ontrinuity) let X,Y be topological spaces where Y is a metric space, and (fn) be a sequence of functions from X to Y. A function $f: X \rightarrow Y$ is called The uniform limit of (fn) A function $f: X \rightarrow Y$ is called The uniform limit of (fn) if: for all $z > 0$ Three exists NeIN so that for all $n \ge N$ and all $x \in X$ we get $J(f_n(x), f(x)) < \varepsilon$.	

Non-ex The functions -	$f_n: [0,1] \rightarrow [0,1] give by$
$f_n(x) = x^n$ have pointwi	in limit $f(x) = \begin{cases} 0 & \text{if } x < 1 \\ 1 & \text{if } x = 1 \end{cases}$
	uniformly. Challenge: pourit!
Fact: If (f.) converge (f.) converge pointwise	uniformly to f, Thun to f.

Then (Continuous finctions are cloud under uniform limits)
If X is a topological space and Y is a metric space, If X is a topological space and Y is a metric space, Thus if (f.) (onverse uniformly to f and each fu Thus if (f.) (onverse uniformly to f and each fu is continuous, Thus f is continuous too.
Pf (to be posted when slides go up)
Let V be open in Y, and we want to show that $f'(v)$ is open in X. For This, let $x \in f''(v)$ be given, and we aim to find on open $U \subseteq X$ with $X \in U \subseteq f''(v)$.

New since $x \in f'(V)$, we know $f(x) \in V$. Since V is open and open balls form a basis for the topology on Y, we
Knew This exists some ZEY and p>D so Thirt f(x)ED(2,p).
In fact, if we select $\varepsilon = \rho - d(z, f(x))$, we even have
$f(x) \in B(f(x), \epsilon) \subseteq B(\epsilon, \rho) \subseteq V$ [using an against we're seen a few times before]. Now, we know that sime (f_n) conveyes uniformly to f, Thre exists some N so that for all n=N and uniformly to f, Thre exists some N so that for all n=N and
uniformly to f , three exists form, since f_N is all wEX we have $d(f(w), f_n(w)) < \frac{\varepsilon}{3}$. Further, since f_N is continuous, we know that $U = f_N^{-1}(B(f(x), \frac{\varepsilon}{3}))$ is open.
We will aim to show that $x \in U \subseteq f^{-1}(V)$.

First, to see $x \in U = f_N^{-1}(B(f_N(x), \xi/3))$, Note that	
$d(f_N(x), f_N(x)) = 0 < \frac{2}{3}$ and so $x \in f_N^{-1}(B f_N(x), \frac{2}{3}) = 0$	λ
Now we check that $U \subseteq f'(V)$. Sime $B(f(x), \epsilon) \subseteq V$, w	M
do This by showing any y EU has fly) = B(+(x), E).	
yell means $f_N(y) \in B(f_N(x), \frac{2}{3})$, and so:	Г. Г. Ц.Т.
$d(f(x), f(y)) \leq d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y))$	[ineq.]
$\langle \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$	
definition of N in unitern contranty yEU in unitern contranty	· · · · · · ·

Fin remark: The topics we discussed today	Jeal with
Fin remark: the topics we discussed today sequences of functions cenerging. So: Can n about functions of "points" inside some topo	lagical Space?
about promover of prints and it	
Let $F_{in}(X,Y) = \{f: X \rightarrow Y\}$. If d is a we can define a metric on $F_{in}(X,Y)$:	WETTIC DU
$J(f_1g) = s \cdot p \{ \max\{d(f(x), g(x)), 1\} \}$	}
"uniform bounded metric on Fun (X,Y)"	· · · · · · · · · · · ·

Fact 1: uniform convergence of (f.,) to f is just convergence within metric space Fin(X,Y)	
Fact 2: since inform limits of continuous functions are continuous, This means	
functions are continues find as fis continuous } = Fun(XiY) C = { f: X > Y f is continuous } = Fun(XiY) is closed under limits, and hence is a	!)
closed subspace of Fun (X,Y).	