Lectre 2 Bons

Riemann Sim Calculations

Ex Approximate
$$\int_{2}^{4} x^{2} - x + 2 dx$$

using a Riemann sum with $n = 4$ and

using the left-hand rule.

The started well divide [2,4] into 450

To get started, we'll divide
$$[2,4]$$
 into 4 subject.

 $\Delta x = \frac{4-2}{4} = \frac{1}{2}$
 2
 2
 3
 3.5
 4

Now we need to pick our 'sample points' X;* 1st interval is [2,2.5] has $x^* = 2$ 2^{nd} , level is [25,3] has $\chi_2^* = 2.5$ 3^{12} in function is [3,3,5] has $x_3^{*} = 3$

 $\sqrt{1}$ interval is [3.5,4] has $\chi_{4}^{*}=3.5$

With This in mind, recall The Riemann sum W Want is $f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x$ area of area of second rectyle $=\sum_{i=1}^{4}f(x_{i}^{*})\Delta x$

Now just plug our f, xix, and Dx in!

From In problem,
$$f(x) = x^2 - x + 2$$
. We re already

compled $x^* = 2$, $x^* = 2.5$, $x^* = 3$, $x^* = 3.5$. We also

already knew $\Delta x = 0.5$.

$$f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x$$

$$= f(2) * \frac{1}{2} + f(2.5) * \frac{1}{2} + f(3.5) * \frac{1}{2}$$

$$= (2^{2}-2+2)*2 + (2.5^{2}-2.5+2)*2 + (3^{2}-3+2)*2$$

$$+ (3.5^{2}-3.5+2)*2$$

Ex Approximate
$$\int_{2}^{4} x^{2} - x + 2 dx$$
using a Riemann sum with $n = 4$ and
using the midpoint-hand rule.

To get started, we'll divide
$$[2,4]$$
 into 4 subject.

Ax = $\frac{4-2}{4} = \frac{1}{2}$

2 2.5 3 3.5 4

Now we need to pick our 'sample points'
$$X_1^*$$
1st interval is $\begin{bmatrix} 2,2.5 \end{bmatrix}$ has $X_1^* = \frac{2+2.5}{2} = \frac{4.5}{2}$
2nd interval is $\begin{bmatrix} 2.5,3 \end{bmatrix}$ has $X_2^* = \frac{25+3}{2} = \frac{5.5}{2}$

$$3^{1}d$$
 interval is [3,5,4] has $x_{3}^{*} = \frac{3+3.5}{2} = \frac{6.5}{2}$

With This in mind, recall The Riemann sum W Want is $f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x + f(x^*) * \Delta x$ area of area of second rectyle $=\sum_{i=1}^{4}f(x_{i}^{*})\Delta x$

Now just plug our f, xix, and Dx in!

From Im problem,
$$f(x) = x^2 - x + 2$$
. We re already

compled $x^* = \frac{45}{2}$, $x^*_1 = \frac{55}{2}$, $x^*_3 = \frac{65}{2}$, $x^*_4 = \frac{75}{2}$. We also

already know $\Delta x = 0.5$.

$$f(x^*_1) * \Delta x + f(x^*_1) * \Delta x + f(x^*_2) * \Delta x + f(x^*_1) * \Delta x$$

$$= f(\frac{45}{2}) * \frac{1}{2} + f(\frac{55}{2}) * \frac{1}{2} + f(\frac{95}{2}) * \frac{1}{2}$$

$$= ((\frac{45}{2})^2 - \frac{45}{2} + 2) * \frac{1}{2} + ((\frac{55}{2})^2 - \frac{55}{2} + 2) * \frac{1}{2}$$

$$+((\frac{55}{2})^2 - \frac{65}{2} + 2) * \frac{1}{2} + ((\frac{75}{2})^2 - \frac{75}{2} + 2) * \frac{1}{2}$$

Ex Estante $\int_{0}^{\infty} f(x) dx$ depoted using The right hand Riemann sum

we med to Split [-4,5) into 3 s. h. nterrols of width Intras are [2,4],-1],[-1,2],[2,5]

Lohezht is f The Riemann sum is $f(x^*) \star \Delta x + f(x^*) \star \Delta x$ $+f(x_3^*)*\Delta x$ = f(-1) *3 + f(2) *3 +f(5)*3