Day 9 Bonus Try / Invese Try hybrids

In class we compted an integral and our answer involved our expression $tan \left(NCSU \left(\frac{x}{4} \right) \right)$

Can we simplify this? Yes!

Cey Jea : Jecode nout averec (7) mens.

To say that
$$arcsec(\frac{x}{4}) = \theta$$
 means

That $Sec(\theta) = \frac{x}{4}$. We want

 $tan(arcsec(\frac{x}{4})) = tan(\theta)$.

So what Jo we do:

O we draw a trugle to "realize" $Sec(\theta) = \frac{x}{4}$

O we draw a trugle to "only the tan(θ)

How to Jaw of transk That Captain scill =
$$\frac{x}{4}$$
?

First, $\frac{x}{4} = Sci(\theta) = \frac{1}{cos(\theta)} = \frac{1}{adj/hyp} = \frac{hyp}{adj}$

What is $tan(\theta)$?

Under is $tan(\theta)$?

 $tan(\theta) = \frac{sin(\theta)}{(osl\theta)} = \frac{opp}{adj/hyp} = \frac{opp}{adj}$

Pythagoras says $opp^2 + adj^2 = hyp^2$

Pythagoras says $opp^2 + adj^2 = hyp^2$
 $= \sqrt{x^2 - 16}$

Pothing all this tegether, we get that
$$\left(\operatorname{arcsec}\left(\frac{\times}{4}\right)\right) = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{\sqrt{\times^2 - 16}}{4}$$