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The general constraints

Suppose that G is a directed graph

V is the vertex set for G

A C V x V is the set of arcs of G ‘
Want to rank vertices (using R : V — R) 1) QL _3)

should depend only on structure of G '

shouldn’t produce many ties (4]
should be equitable
should be stable under “attack”

should be computable
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L { 1, if @ "©

1J

0 , else
01100
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01011
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The first approach

is a vote for@ from @ Q
O=—Q_13)

Form matrix L so that \\(
=41 if (7}—(0) @ B
0 , else

01100
Scheme 1: R (({)) = D0 ki 00101

01011
Page 3 wins (score 3), Pages 1,2,5 000O0OTO
tie for second (score 2), Page 4 loses 10100
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Updating our approach

Each page gets a total of 1 vote: Q
O—C2_J3)

ty) = ZLM \X

4 )
Form matrix W so that
0 05 033 0 0
a5 o FG—0 0 0 033 0 05
Wi, = . | 005 0 1 05
) €ise 00 0 0 0
1 0 0330 0

Scheme 2: R ((})) = X7, Wij
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Problems with second approach

e Evil users can really manipulate
results

e Gives importance to links from
unimportant pages

0
0
0
0
1

0
0.5 0.33
0 033
05 0
0 0
0 033
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Weighting votes

0 05 033 0 O
Importance of should 0 0 033 0 05
depend on R(@) Want 0 05 '0 1 0‘5
0O 0 0 0 O
R(@) = 5 R@Wiy 1 0 0330 0
0.41
R(D) R(@)
» ‘ B _ 0.47
: o 0.52 | is 1-eigenvector

R(@) R (@) 0
0.58
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Some slight modifications

This system satisfies most of the properties that we're
interested in.

One small problem: what if dim(£E;) > 17

Theorem

If an n X n matrix has positive entries and columns sum to 1,
then dim(£;) = 1.

1 1
Let PR = dW + (1 — d) :
1 1
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Computability

There are lots of webpages! How can we feasibly compute an
eigenvector for 101% x 10 matrix?

Row reduction is a bad idea:

e would take about (10%°)3 = 103° computations.

e the fastest super computer runs about 2.5 x 10%°
computations per second.

e this row reduction would take about 30,000, 000 years.

10
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Approximation is our friend

Suppose that we have an eigenbasis {Vf, -+« vy} for PR.
Then a random vector V can be expressed in the form

7 = C]_V]_> + - -+ + CypoVqgl0.

Then
PRk7 = C1)\§71> o+ v+ Clolo)\folovlolo.

Fact: If an n x n matrix has positive entries and columns
sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limy_soo PR*V is an eigenvector with eigenvalue 1.

11
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The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r x ¢ matrix A with real entries, there exist
orthonormal bases {71, e ,7,} C R’ and

{Wl, e ,Wc} C R€, and scalars o; > --- > g, > 0 such
that
01 7V>1
A: 71 o e 7I’ 0-2
W

12
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What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero o;'s
Orthonormal bases for im(A), ker(A), im(AT), ker(AT)
if Ais square, |det(A)| =[] o;

simple expression for Psuedolnverse

Quick test for numerical stability of matrix

13
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SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1

matrices:
%
rk(A) Wi
A=>"oi| Vil |V, | EG) :
i=1 W)C

A
Since o1 > -+ >0y >0, Aiy1 is “less significant” than A;

S
If .., 07 is “insignificant,” then we have A~ ) " A;
i=1

14
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Noise Filtering

ii5)



Who cares about matrix
factorization?

Image compression through SVD
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Keeping only “significant” terms

According to our theory, if there are s-many significant

M =~ iM,
i=1

singular values, then

140000,
o o1 ~ 138,000
80000 o, =~ 17,000
60000

40000 050 ~ 2, 200

20000, 0200 ~ 900

200 400 600 800
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Some approximations

Let's see what our truncated matrix “looks like"

e s—1

e Compression:
0.18%
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Some approximations

Let's see what our truncated matrix “looks like"

e s—100

e Compression:
18%
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Problems in this approach

This technique has some problems

e ad hoc method for determining when we're done

e requires we keep track of singular values and basis
elements (1 + r+ ¢ pieces of data for each singular value!)

Would be nice to find something more systematic

e controlling quality of compressed image
e doesn't require us to keep track of a basis

e takes advantage of properties of images

19
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The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.
A=) a;E(i))
ij

where E(i,j) is the matrix with a 1 in the ith row, jth column.
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The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.
A=) a;E(i))
ij

where E(i,j) is the matrix with a 1 in the ith row, jth column.

e Each E(i, ) solely responsible for its local behavior.

e Deleting an a;; completely wipes out pixel info.

20



Rewriting the matrix

What if we chose a different basis for n x n matrices?

A=Y ¢B(i,))
iJj
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Rewriting the matrix

What if we chose a different basis for n x n matrices?
A=Y ¢B(i,))
ij

Would be nice if

e basis weren't so “local”

e deleting ¢;; has gradual (though global) effect

21
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A potential basis

We'll choose an basis of R" from Fourier series
7o=afes[F ()}
= SCOS [— | —— ) I
n 2 ‘o
J_

We'll simply change basis to B = {?0, e ,?,,_1}

o
B(i,)) = 5 EGA) | Fol | Fon
;nfl
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Seeing the new basis (n = 8)
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Computing the B-matrix

Compute coefficients ¢;; such that A = Z ¢ jB(i,j) by
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Computing the B-matrix

Compute coefficients ¢;; such that A = Z ¢ jB(i,j) by
_Fo

Al 7] | 7
;n—l
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The human eye and B
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Why we chose this basis

This is a good basis because

e Human eye only sees in “steps”; if distinguishable step
size for B(i,j) is q;j, then

.. Cij ..
ZCI,jB(’a./) ~ ZQI,j {q—J] B(i,J)
i iy

I7J

e Images are “smooth” (small “high frequency”
components)

2 uBld)~ 3 [;—J} B(i.j)

small i,
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How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:
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How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

e Split image into 8 x 8 blocks
e Change coordinates for each 8 x 8 submatrix

e Quantize
Then decompression is

e De-quantize
e Change back to standard coordinates

e Reassemble the 8 x 8 blocks

26
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Extract an 8 x 8 block

27



Working through an example

Extract an 8 x 8 block

115100 98 153 154 142 143 130
131118 101 157 156 146 156 149
137 115 100 163 148 147 153 130
135113 101 163 152 149 150 127
140 111 102 156 152 152 155 142
157 132 116 153 150 151 159 160
164 155 138 152 144 141 151 161
152 146 145 143 135 132 142 159
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Working through an example

Change to B-version

115 100 98 153 154 142 143 130
131 118 101 157 156 146 156 149
137 115 100 163 148 147 153 130
135 113 101 163 152 149 150 127
140 111 102 156 152 152 155 142
157 132 116 153 150 151 159 160
164 155 138 152 144 141 151 161
152 146 145 143 135 132 142 159

28



Working through an example

Change to B-version

115 100 98 153 154 142 143 130 1112 —61 —14 44 57 34 —32 —26
131 118 101 157 156 146 156 149 —43 —36 —43 25 13 12 —15 -8
137 115 100 163 148 147 153 130 2 12 12 —26 —8 —16 7 10
135 113 101 163 152 149 150 127 2 —14 1 7 6 -3 1 2
140 111 102 156 152 152 155 142 —25 —4 —16 0 —1 2 5 8
157 132 116 153 150 151 159 160 -2 12 —6 1 -3 2 -1 =2
164 155 138 152 144 141 151 161 -9 -1 -2 3 0 5 2 0
152 146 145 143 135 132 142 159 —4 2 -2 1 -1 3] 1 -1
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Working through an example

Quantize

1112 —61 —14 44 57 34 —32 —26
—43 —36 —43 25 13 12 —-15 -8
2 12 12 —-26 —8 —16 7 10

2 —14 1 7 6 -3 1 2
—25 —4 —16 0 —1 2 5 8
-2 12 —6 1 -3 2 -1 =2
=0 =i =2 3 0 5 2 0
—4 2 =2 1 -1 3 1 -1

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
71 92 95 98 112 100 103 99
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Working through an example

Quantize

1112 —61 —14 44 57 34 —32 —26
—43 —36 —43 25 13 12 —-15 -8
2 12 12 —-26 —8 —16 7 10

2 —14 1 7 6 -3 1 2

—25 —4 —16 0 —1 2 5 8 70 -6 —1 321 —10
-2 12 —6 1 -3 2 -1 =2 —4 -3 -3 100 00
= =l =2 3.0 5 2 0 0 1 1-100 00

—4 2 =2 1 -1 — —
3 1 1 70 1 0 000 00O
16 11 10 16 24 40 51 61 1 0 0 000 OO
12 12 14 19 26 58 60 55 0O 0 0 000 OO
14 13 16 24 40 57 69 56 0 0 0 000 0O
14 17 22 29 51 87 80 62 0O 0 0O 000 OO

18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
71 92 95 98 112 100 103 99
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Working through an example

Quantize

1112 —61 —14 44 57 34 —32 —26
—43 —36 —43 25 13 12 —-15 -8
2 12 12 —-26 —8 —16 7 10
2 —14 1 7 6 -3 1 2

—25 —4 —16 0 —1 2 5 8 70 -6 —1 321 —-10
-2 12 —6 1 -3 2 -1 =2 —4 -3 -3 100 00
-9 -1 =2 3.0 5 2 0 0 1 1-100 00
—4 2 =2 1 -1 3] 1 -1 —
16 11 10 16 24 40 51 61 72 (1) g g g g 8 8
12 12 14 19 26 58 60 55 0O 0 0O 00O OO
14 13 16 24 40 57 69 56 0 0 0 000 0O
14 17 22 29 51 87 80 62 0O 0 0O 000 OO

18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
71 92 95 98 112 100 103 99

We're down to 16 pieces of information!
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Reconstituting our image

Here's the result of reversing this process:
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Reconstituting our image

Here's the result of reversing this process:

Original Compressed
115 100 98 153 154 142 143 130 114 103 101 144 149 136 154 135
131 118 101 157 156 146 156 149 125 111 106 150 156 142 57 134
137 115 100 163 148 147 153 130 133 115 107 151 160 146 157 130
135 113 101 163 152 149 150 127 134 114 104 147 158 146 157 129
140 111 102 156 152 152 155 142 139 118 106 148 156 146 163 139
157 132 116 153 150 151 159 160 151 132 118 153 155 145 169 153
164 155 138 152 144 141 151 161 162 144 129 155 147 135 165 158
152 146 145 143 135 132 142 159 166 150 132 152 137 122 157 154

30



Reconstituting our image

Here's the

115
131
137
135
140
157
164
152

100
118
115
113
111
132
155
146

result of reversing this process:

Original
98 153 154 142 143 130 114
101 157 156 146 156 149 125
100 163 148 147 153 130 133
101 163 152 149 150 127 134
102 156 152 152 155 142 139
116 153 150 151 159 160 151
138 152 144 141 151 161 162
145 143 135 132 142 159 166

e Average difference = 5.73
e Std Dev = 4.22

Compressed

101 144 149 136
106 150 156 142
107 151 160 146
104 147 158 146
106 148 156 146
118 153 155 145
129 155 147 135
132 152 137 122

154

57
157
157
163
169
165
157

135
134
130
129
139
153
158
154

30



Seeing is believing

Original Compressed

31



Image Processing

We can use these ideas to do some image processing as well
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Image Processing

We can use these ideas to do some image processing as well

e “smooth” part of the image comes from low frequency
Fourier coefficients

e ‘“edges’ come from the high frequency Fourier coefficients

Note: Here | won't split the image into 8 x 8 blocks — | want
all the information about the image simultaneously

32



Image Processing

Smooth Part: B(i, ) components for small j, small
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Image Processing

Smooth Part: B(i, ) components for small j, small
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Image Processing

Horizontal Edges: B(i,j) components for small j, large i
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Image Processing

~.

Horizontal Edges: B(i,j) components for small j, large
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Image Processing

Vertical Edges: B(i, ) components for small /, large j
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Image Processing

Vertlcal Edges: B(i,)) components for smaII i, Iargej
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Image Processing

Scattered Edges: B(i,j) components for large i, large j
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Image Processing

Scattered Edges: B(i,j) components for large i, large j
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Who cares about change of
basis?

The human ear and 5



How MP3 compression works

Similar ideas are used to compress music into mp3's
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How MP3 compression works

Similar ideas are used to compress music into mp3's

e Sample an audio source

e Humans hear between 20Hz and 20,000Hz

e Sample at 41,000Hz

e 16bits per sample and 2 channels means 1.3 million bits
per second

e Break sample into smaller blocks
e Express these blocks in terms of B-coordinates

e Filter out “unnecessary” data using psychoacoustics

37



Psychoacoustics

e Simultaneous Masking - If two tones with near
frequencies are played at the same time, your brain only
hears the louder one
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Psychoacoustics

e Simultaneous Masking - If two tones with near
frequencies are played at the same time, your brain only
hears the louder one

e Temporal Masking - Some weak sounds aren’t heard if
played right after (or right before!) a louder sound

e Hass effect - If the same tone hits one ear just before
another, then your brain perceives it as coming only from
the first direction
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Thank you!
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