
Linear algebra in your daily (digital)

life

Andrew Schultz

December 10, 2025

1

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Outline

• Who cares about eigenvalues?

• Google’s PageRank algorithm

• Who cares about matrix factorizations?

• Filtering noise

• Image compression

• Who cares about change of basis?

• Image compression

• Sound compression

2

Who cares about eigenvalues?

Who cares about eigenvalues?

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)

• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The general constraints

Suppose that G is a directed graph

• V is the vertex set for G

• A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)
• should depend only on structure of G

• shouldn’t produce many ties

• should be equitable

• should be stable under “attack”

• should be computable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

3

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i

0 , else

Scheme 1: R
(
i
)
=

∑n
j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5

tie for second (score 2), Page 4 loses

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



4

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable

5

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



5

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable

1

''

2oo ((
3

hh

		
4

@@

5

^^ II

5

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable

2′

2′′

��
1

''

2oo ((
3

hh

		
4

??

5

__ II

5

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



5

Problems with first approach

• Potential for lots of ties

• Evil users can manipulate

results

• Not equitable


0 1 1 0 0

0 0 1 0 1

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0



5

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Updating our approach

Each page gets a total of 1 vote:

ℓ(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

ℓ(j)
, if j // i

0 , else

Scheme 2: R
(
i
)
=

∑n
j=1 Wi ,j

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



6

Problems with second approach

• Evil users can really manipulate

results

• Gives importance to links from

unimportant pages

7

Problems with second approach

• Evil users can really manipulate

results

• Gives importance to links from

unimportant pages

7

Problems with second approach

• Evil users can really manipulate

results

• Gives importance to links from

unimportant pages

1

''

2oo ((
3

hh

		
4

@@

5

^^ II


0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0



7

Weighting votes

Importance of j // i should

depend on R(j).

Want

R
(
i
)
=

∑
j R(j)Wi ,j

W

 R(1)
...

R(n)

 =

 R(1)
...

R(n)




0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0




0.41

0.47

0.52

0

0.58

 is 1-eigenvector

8

Weighting votes

Importance of j // i should

depend on R(j). Want

R
(
i
)
=

∑
j R(j)Wi ,j

W

 R(1)
...

R(n)

 =

 R(1)
...

R(n)




0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0




0.41

0.47

0.52

0

0.58

 is 1-eigenvector

8

Weighting votes

Importance of j // i should

depend on R(j). Want

R
(
i
)
=

∑
j R(j)Wi ,j

W

 R(1)
...

R(n)

 =

 R(1)
...

R(n)




0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0




0.41

0.47

0.52

0

0.58

 is 1-eigenvector

8

Weighting votes

Importance of j // i should

depend on R(j). Want

R
(
i
)
=

∑
j R(j)Wi ,j

W

 R(1)
...

R(n)

 =

 R(1)
...

R(n)




0 0.5 0.33 0 0

0 0 0.33 0 0.5

0 0.5 0 1 0.5

0 0 0 0 0

1 0 0.33 0 0




0.41

0.47

0.52

0

0.58

 is 1-eigenvector

8

Some slight modifications

This system satisfies most of the properties that we’re

interested in.

One small problem: what if dim(E1) > 1?

Theorem

If an n× n matrix has positive entries and columns sum to 1,

then dim(E1) = 1.

Let PR = dW + (1− d)


1
n

· · · 1
n

...
. . .

...
1
n

· · · 1
n



9

Some slight modifications

This system satisfies most of the properties that we’re

interested in.

One small problem: what if dim(E1) > 1?

Theorem

If an n× n matrix has positive entries and columns sum to 1,

then dim(E1) = 1.

Let PR = dW + (1− d)


1
n

· · · 1
n

...
. . .

...
1
n

· · · 1
n



9

Some slight modifications

This system satisfies most of the properties that we’re

interested in.

One small problem: what if dim(E1) > 1?

Theorem

If an n× n matrix has positive entries and columns sum to 1,

then dim(E1) = 1.

Let PR = dW + (1− d)


1
n

· · · 1
n

...
. . .

...
1
n

· · · 1
n



9

Some slight modifications

This system satisfies most of the properties that we’re

interested in.

One small problem: what if dim(E1) > 1?

Theorem

If an n× n matrix has positive entries and columns sum to 1,

then dim(E1) = 1.

Let PR = dW + (1− d)


1
n

· · · 1
n

...
. . .

...
1
n

· · · 1
n


9

Computability

There are lots of webpages! How can we feasibly compute an

eigenvector for 1010 × 1010 matrix?

Row reduction is a bad idea:

• would take about (1010)3 = 1030 computations.

• the fastest super computer runs about 2.5× 1015

computations per second.

• this row reduction would take about 30, 000, 000 years.

10

Computability

There are lots of webpages! How can we feasibly compute an

eigenvector for 1010 × 1010 matrix?

Row reduction is a bad idea:

• would take about (1010)3 = 1030 computations.

• the fastest super computer runs about 2.5× 1015

computations per second.

• this row reduction would take about 30, 000, 000 years.

10

Computability

There are lots of webpages! How can we feasibly compute an

eigenvector for 1010 × 1010 matrix?

Row reduction is a bad idea:

• would take about (1010)3 = 1030 computations.

• the fastest super computer runs about 2.5× 1015

computations per second.

• this row reduction would take about 30, 000, 000 years.

10

Computability

There are lots of webpages! How can we feasibly compute an

eigenvector for 1010 × 1010 matrix?

Row reduction is a bad idea:

• would take about (1010)3 = 1030 computations.

• the fastest super computer runs about 2.5× 1015

computations per second.

• this row reduction would take about 30, 000, 000 years.

10

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1010} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1010

−−→v1010 .

Then

PRk−→v = c1λ
k
1
−→v1 + · · ·+ c1010λ

k
1010

−−→v1010 .

Fact: If an n × n matrix has positive entries and columns

sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvector with eigenvalue 1.

11

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1010} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1010

−−→v1010 .

Then

PRk−→v = c1λ
k
1
−→v1 + · · ·+ c1010λ

k
1010

−−→v1010 .

Fact: If an n × n matrix has positive entries and columns

sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvector with eigenvalue 1.

11

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1010} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1010

−−→v1010 .

Then

PRk−→v = c1λ
k
1
−→v1 + · · ·+ c1010λ

k
1010

−−→v1010 .

Fact: If an n × n matrix has positive entries and columns

sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvector with eigenvalue 1.

11

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1010} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1010

−−→v1010 .

Then

PRk−→v = c1λ
k
1
−→v1 + · · ·+ c1010λ

k
1010

−−→v1010 .

Fact: If an n × n matrix has positive entries and columns

sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvector with eigenvalue 1.

11

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1010} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1010

−−→v1010 .

Then

PRk−→v = c1λ
k
1
−→v1 + · · ·+ c1010λ

k
1010

−−→v1010 .

Fact: If an n × n matrix has positive entries and columns

sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvector with eigenvalue 1.

11

Who cares about matrix

factorization?

Who cares about matrix

factorization?

Singular Value Decomposition

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r × c matrix A with real entries, there exist

orthonormal bases {−→v 1, · · · ,−→v r} ⊆ Rr and

{−→w 1, · · · ,−→w c} ⊆ Rc , and scalars σ1 ≥ · · · ≥ σℓ ≥ 0 such

that

A =

 −→v 1 · · · −→v r


 σ1

σ2

. . .




−→w 1

...
−→w c

 .

12

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r × c matrix A with real entries, there exist

orthonormal bases {−→v 1, · · · ,−→v r} ⊆ Rr and

{−→w 1, · · · ,−→w c} ⊆ Rc

, and scalars σ1 ≥ · · · ≥ σℓ ≥ 0 such

that

A =

 −→v 1 · · · −→v r


 σ1

σ2

. . .




−→w 1

...
−→w c

 .

12

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r × c matrix A with real entries, there exist

orthonormal bases {−→v 1, · · · ,−→v r} ⊆ Rr and

{−→w 1, · · · ,−→w c} ⊆ Rc , and scalars σ1 ≥ · · · ≥ σℓ ≥ 0 such

that

A =

 −→v 1 · · · −→v r


 σ1

σ2

. . .




−→w 1

...
−→w c

 .

12

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r × c matrix A with real entries, there exist

orthonormal bases {−→v 1, · · · ,−→v r} ⊆ Rr and

{−→w 1, · · · ,−→w c} ⊆ Rc , and scalars σ1 ≥ · · · ≥ σℓ ≥ 0 such

that

A =

 −→v 1 · · · −→v r


 σ1

σ2

. . .




−→w 1

...
−→w c

 .

12

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σi ’s

• Orthonormal bases for im(A), ker(A), im(AT), ker(AT)

• if A is square, | det(A)| =
∏

σi

• simple expression for PsuedoInverse

• Quick test for numerical stability of matrix

13

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1

matrices:

A =

rk(A)∑
i=1

σi

 −→v 1 · · · −→v r

E (i , i)


−→w 1

...
−→w c


︸ ︷︷ ︸

Ai

.

Since σ1 ≥ · · · ≥ σℓ ≥ 0, Ai+1 is “less significant” than Ai

If
∑

i>s σi is “insignificant,” then we have A ≈
s∑

i=1

Ai

14

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1

matrices:

A =

rk(A)∑
i=1

σi

 −→v 1 · · · −→v r

E (i , i)


−→w 1

...
−→w c


︸ ︷︷ ︸

Ai

.

Since σ1 ≥ · · · ≥ σℓ ≥ 0, Ai+1 is “less significant” than Ai

If
∑

i>s σi is “insignificant,” then we have A ≈
s∑

i=1

Ai

14

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1

matrices:

A =

rk(A)∑
i=1

σi

 −→v 1 · · · −→v r

E (i , i)


−→w 1

...
−→w c


︸ ︷︷ ︸

Ai

.

Since σ1 ≥ · · · ≥ σℓ ≥ 0, Ai+1 is “less significant” than Ai

If
∑

i>s σi is “insignificant,” then we have A ≈
s∑

i=1

Ai

14

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1

matrices:

A =

rk(A)∑
i=1

σi

 −→v 1 · · · −→v r

E (i , i)


−→w 1

...
−→w c


︸ ︷︷ ︸

Ai

.

Since σ1 ≥ · · · ≥ σℓ ≥ 0, Ai+1 is “less significant” than Ai

If
∑

i>s σi is “insignificant,” then we have A ≈
s∑

i=1

Ai

14

Who cares about matrix

factorization?

Application to noise filtering

Noise Filtering

15

Who cares about matrix

factorization?

Image compression through SVD

Matrix representations of images

You can think of an

image as a matrix.

• Each pixel contains

a gray value

• Gray values range

from 0 to 255

16

Matrix representations of images

You can think of an

image as a matrix.

• Each pixel contains

a gray value

• Gray values range

from 0 to 255

16

Matrix representations of images

You can think of an

image as a matrix.

• Each pixel contains

a gray value

• Gray values range

from 0 to 255

16

Matrix representations of images

You can think of an

image as a matrix.

• Each pixel contains

a gray value

• Gray values range

from 0 to 255

16

Keeping only “significant” terms

According to our theory, if there are s-many significant

singular values, then

M ≈
s∑

i=1

Mi

σ1 ≈ 138, 000

σ2 ≈ 17, 000

σ50 ≈ 2, 200

σ200 ≈ 900

17

Keeping only “significant” terms

According to our theory, if there are s-many significant

singular values, then

M ≈
s∑

i=1

Mi

σ1 ≈ 138, 000

σ2 ≈ 17, 000

σ50 ≈ 2, 200

σ200 ≈ 900

17

Some approximations

Let’s see what our truncated matrix “looks like”

• s=1

• Compression:

0.18%

18

Some approximations

Let’s see what our truncated matrix “looks like”

• s=5

• Compression:

0.9%

18

Some approximations

Let’s see what our truncated matrix “looks like”

• s=10

• Compression:

1.8%

18

Some approximations

Let’s see what our truncated matrix “looks like”

• s=25

• Compression:

4.5%

18

Some approximations

Let’s see what our truncated matrix “looks like”

• s=100

• Compression:

18%

18

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Problems in this approach

This technique has some problems

• ad hoc method for determining when we’re done

• requires we keep track of singular values and basis

elements (1+ r + c pieces of data for each singular value!)

Would be nice to find something more systematic

• controlling quality of compressed image

• doesn’t require us to keep track of a basis

• takes advantage of properties of images

19

Who cares about change of

basis?

Who cares about change of

basis?

New coordinate systems

The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

A =
∑
i ,j

aijE (i , j)

where E (i , j) is the matrix with a 1 in the ith row, jth column.

• Each E (i , j) solely responsible for its local behavior.

• Deleting an aij completely wipes out pixel info.

20

The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

A =
∑
i ,j

aijE (i , j)

where E (i , j) is the matrix with a 1 in the ith row, jth column.

• Each E (i , j) solely responsible for its local behavior.

• Deleting an aij completely wipes out pixel info.

20

The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

A =
∑
i ,j

aijE (i , j)

where E (i , j) is the matrix with a 1 in the ith row, jth column.

• Each E (i , j) solely responsible for its local behavior.

• Deleting an aij completely wipes out pixel info.

20

Rewriting the matrix

What if we chose a different basis for n × n matrices?

A =
∑
i ,j

cijB(i , j)

Would be nice if

• basis weren’t so “local”

• deleting ci ,j has gradual (though global) effect

21

Rewriting the matrix

What if we chose a different basis for n × n matrices?

A =
∑
i ,j

cijB(i , j)

Would be nice if

• basis weren’t so “local”

• deleting ci ,j has gradual (though global) effect

21

Rewriting the matrix

What if we chose a different basis for n × n matrices?

A =
∑
i ,j

cijB(i , j)

Would be nice if

• basis weren’t so “local”

• deleting ci ,j has gradual (though global) effect

21

Rewriting the matrix

What if we chose a different basis for n × n matrices?

A =
∑
i ,j

cijB(i , j)

Would be nice if

• basis weren’t so “local”

• deleting ci ,j has gradual (though global) effect

21

A potential basis

We’ll choose an basis of Rn from Fourier series

−→
f i = αi

{
cos

[
π

n

(
2j + 1

2

)
i

]}n−1

j=0

We’ll simply change basis to B = {
−→
f 0, · · · ,

−→
f n−1}

B(i , j) =


−→
f 0

...
−→
f n−1

E (i , j)

 −→
f 0 · · ·

−→
f n−1



22

A potential basis

We’ll choose an basis of Rn from Fourier series

−→
f i = αi

{
cos

[
π

n

(
2j + 1

2

)
i

]}n−1

j=0

We’ll simply change basis to B = {
−→
f 0, · · · ,

−→
f n−1}

B(i , j) =


−→
f 0

...
−→
f n−1

E (i , j)

 −→
f 0 · · ·

−→
f n−1



22

A potential basis

We’ll choose an basis of Rn from Fourier series

−→
f i = αi

{
cos

[
π

n

(
2j + 1

2

)
i

]}n−1

j=0

We’ll simply change basis to B = {
−→
f 0, · · · ,

−→
f n−1}

B(i , j) =


−→
f 0

...
−→
f n−1

E (i , j)

 −→
f 0 · · ·

−→
f n−1



22

Seeing the new basis (n = 8)

23

Computing the B-matrix

Compute coefficients ci ,j such that A =
∑

i ,j ci ,jB(i , j) by


−→
f 0

...
−→
f n−1

A

 −→
f 0 · · ·

−→
f n−1



24

Computing the B-matrix

Compute coefficients ci ,j such that A =
∑

i ,j ci ,jB(i , j) by
−→
f 0

...
−→
f n−1

A

 −→
f 0 · · ·

−→
f n−1



24

Who cares about change of

basis?

The human eye and B

Why we chose this basis

This is a good basis because

• Human eye only sees in “steps”; if distinguishable step

size for B(i , j) is qi ,j , then∑
i ,j

ci ,jB(i , j) ≈
∑
i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

• Images are “smooth” (small “high frequency”

components)∑
i ,j

ci ,jB(i , j) ≈
∑

small i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

25

Why we chose this basis

This is a good basis because

• Human eye only sees in “steps”; if distinguishable step

size for B(i , j) is qi ,j , then∑
i ,j

ci ,jB(i , j) ≈
∑
i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

• Images are “smooth” (small “high frequency”

components)∑
i ,j

ci ,jB(i , j) ≈
∑

small i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

25

Why we chose this basis

This is a good basis because

• Human eye only sees in “steps”; if distinguishable step

size for B(i , j) is qi ,j , then∑
i ,j

ci ,jB(i , j) ≈
∑
i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

• Images are “smooth” (small “high frequency”

components)

∑
i ,j

ci ,jB(i , j) ≈
∑

small i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

25

Why we chose this basis

This is a good basis because

• Human eye only sees in “steps”; if distinguishable step

size for B(i , j) is qi ,j , then∑
i ,j

ci ,jB(i , j) ≈
∑
i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

• Images are “smooth” (small “high frequency”

components)∑
i ,j

ci ,jB(i , j) ≈
∑

small i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

25

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

• Split image into 8× 8 blocks

• Change coordinates for each 8× 8 submatrix

• Quantize

Then decompression is

• De-quantize

• Change back to standard coordinates

• Reassemble the 8× 8 blocks

26

Working through an example

Extract an 8× 8 block

−→


115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159



27

Working through an example

Extract an 8× 8 block

−→


115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159



27

Working through an example

Change to B-version


115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159

 −→


1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1



28

Working through an example

Change to B-version
115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159

 −→


1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1



28

Working through an example

Change to B-version
115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159

 −→


1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1



28

Working through an example

Quantize





1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

71 92 95 98 112 100 103 99




−→


70 −6 −1 3 2 1 −1 0

−4 −3 −3 1 0 0 0 0

0 1 1 −1 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



We’re down to 16 pieces of information!

29

Working through an example

Quantize



1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

71 92 95 98 112 100 103 99




−→


70 −6 −1 3 2 1 −1 0

−4 −3 −3 1 0 0 0 0

0 1 1 −1 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



We’re down to 16 pieces of information!

29

Working through an example

Quantize



1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

71 92 95 98 112 100 103 99




−→


70 −6 −1 3 2 1 −1 0

−4 −3 −3 1 0 0 0 0

0 1 1 −1 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



We’re down to 16 pieces of information!

29

Working through an example

Quantize



1112 −61 −14 44 57 34 −32 −26

−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10

2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3

−2 12 −6 1 −3 2 −1 −2

−9 −1 −2 3 0 5 2 0

−4 2 −2 1 −1 3 1 −1




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

71 92 95 98 112 100 103 99




−→


70 −6 −1 3 2 1 −1 0

−4 −3 −3 1 0 0 0 0

0 1 1 −1 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



We’re down to 16 pieces of information!

29

Reconstituting our image

Here’s the result of reversing this process:

Original Compressed
115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159




114 103 101 144 149 136 154 135

125 111 106 150 156 142 57 134

133 115 107 151 160 146 157 130

134 114 104 147 158 146 157 129

139 118 106 148 156 146 163 139

151 132 118 153 155 145 169 153

162 144 129 155 147 135 165 158

166 150 132 152 137 122 157 154


• Average difference = 5.73

• Std Dev = 4.22

30

Reconstituting our image

Here’s the result of reversing this process:

Original Compressed
115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159




114 103 101 144 149 136 154 135

125 111 106 150 156 142 57 134

133 115 107 151 160 146 157 130

134 114 104 147 158 146 157 129

139 118 106 148 156 146 163 139

151 132 118 153 155 145 169 153

162 144 129 155 147 135 165 158

166 150 132 152 137 122 157 154



• Average difference = 5.73

• Std Dev = 4.22

30

Reconstituting our image

Here’s the result of reversing this process:

Original Compressed
115 100 98 153 154 142 143 130

131 118 101 157 156 146 156 149

137 115 100 163 148 147 153 130

135 113 101 163 152 149 150 127

140 111 102 156 152 152 155 142

157 132 116 153 150 151 159 160

164 155 138 152 144 141 151 161

152 146 145 143 135 132 142 159




114 103 101 144 149 136 154 135

125 111 106 150 156 142 57 134

133 115 107 151 160 146 157 130

134 114 104 147 158 146 157 129

139 118 106 148 156 146 163 139

151 132 118 153 155 145 169 153

162 144 129 155 147 135 165 158

166 150 132 152 137 122 157 154


• Average difference = 5.73

• Std Dev = 4.22

30

Seeing is believing

Original Compressed

31

Image Processing

We can use these ideas to do some image processing as well

• “smooth” part of the image comes from low frequency

Fourier coefficients

• “edges” come from the high frequency Fourier coefficients

Note: Here I won’t split the image into 8× 8 blocks – I want

all the information about the image simultaneously

32

Image Processing

We can use these ideas to do some image processing as well

• “smooth” part of the image comes from low frequency

Fourier coefficients

• “edges” come from the high frequency Fourier coefficients

Note: Here I won’t split the image into 8× 8 blocks – I want

all the information about the image simultaneously

32

Image Processing

We can use these ideas to do some image processing as well

• “smooth” part of the image comes from low frequency

Fourier coefficients

• “edges” come from the high frequency Fourier coefficients

Note: Here I won’t split the image into 8× 8 blocks – I want

all the information about the image simultaneously

32

Image Processing

We can use these ideas to do some image processing as well

• “smooth” part of the image comes from low frequency

Fourier coefficients

• “edges” come from the high frequency Fourier coefficients

Note: Here I won’t split the image into 8× 8 blocks – I want

all the information about the image simultaneously

32

Image Processing

Smooth Part: B(i , j) components for small j , small i

33

Image Processing

Smooth Part: B(i , j) components for small j , small i

33

Image Processing

Horizontal Edges: B(i , j) components for small j , large i

34

Image Processing

Horizontal Edges: B(i , j) components for small j , large i

34

Image Processing

Vertical Edges: B(i , j) components for small i , large j

35

Image Processing

Vertical Edges: B(i , j) components for small i , large j

35

Image Processing

Scattered Edges: B(i , j) components for large i , large j

36

Image Processing

Scattered Edges: B(i , j) components for large i , large j

36

Who cares about change of

basis?

The human ear and B

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates

• Filter out “unnecessary” data using psychoacoustics

37

How MP3 compression works

Similar ideas are used to compress music into mp3’s

• Sample an audio source

• Humans hear between 20Hz and 20,000Hz

• Sample at 41,000Hz

• 16bits per sample and 2 channels means 1.3 million bits

per second

• Break sample into smaller blocks

• Express these blocks in terms of B-coordinates
• Filter out “unnecessary” data using psychoacoustics

37

Psychoacoustics

• Simultaneous Masking - If two tones with near

frequencies are played at the same time, your brain only

hears the louder one

• Temporal Masking - Some weak sounds aren’t heard if

played right after (or right before!) a louder sound

• Hass effect - If the same tone hits one ear just before

another, then your brain perceives it as coming only from

the first direction

38

Psychoacoustics

• Simultaneous Masking - If two tones with near

frequencies are played at the same time, your brain only

hears the louder one

• Temporal Masking - Some weak sounds aren’t heard if

played right after (or right before!) a louder sound

• Hass effect - If the same tone hits one ear just before

another, then your brain perceives it as coming only from

the first direction

38

Psychoacoustics

• Simultaneous Masking - If two tones with near

frequencies are played at the same time, your brain only

hears the louder one

• Temporal Masking - Some weak sounds aren’t heard if

played right after (or right before!) a louder sound

• Hass effect - If the same tone hits one ear just before

another, then your brain perceives it as coming only from

the first direction

38

Thanks!

Thank you!

39

	Who cares about eigenvalues?
	Voting in Directed Graphs

	Who cares about matrix factorization?
	Singular Value Decomposition
	Application to noise filtering
	Image compression through SVD

	Who cares about change of basis?
	New coordinate systems
	The human eye and B
	The human ear and B

