$$
\text { Jone } 1
$$

WARM UP PROBLEMS
k) Find $f(x)$ and $g(x)$ so that

$$
\cos \left(e^{x}\right)=(f \cdot g)(x)
$$

B) Suppose a line has slope -2.5 and passes through $(4,7)$ \rightarrow what is paint-slope firm?
\leadsto Find A sp $(A, 3)$ is on the line.
c) What points are not in the domain of each function?

$$
\begin{aligned}
& \leadsto f(x)=\sqrt{x} \\
& \leadsto g(x)=\frac{x^{3}-3 x-2}{x^{2}-4} \\
& \leadsto h(x)=\sin (x) \cos (x) \\
& \leadsto k(x)=\ln (x)
\end{aligned}
$$

A) Find $f(x)$ and $g(x)$ so that $\cos \left(e^{x}\right)=(f \cdot g)(x)$ Reasonable options:

B) Suppose a line has slope -2.5 and passes Through $(4,7)$
\rightarrow what is point-slope firm?

$$
y-7=-2.5(x-4)
$$

(general firm: $y-y_{0}=m\left(x-x_{0}\right)$)
\leadsto Find A sp (A, B) is on the line
Plug $y=3$ into point slope form and solo for x :

$$
\begin{aligned}
3-7=-2.5(x-4) \leadsto-4 & =-2.5(x-4) \rightarrow \frac{-4}{-2.5}=x-4 \\
& \leadsto x=\frac{-4}{-2.5}+4
\end{aligned}
$$

c) Whet points aN not in the domain of each function?

$$
\leadsto f(x)=\sqrt{x}
$$

$$
\leadsto g(x)=\frac{x^{3}-3 x-2}{x^{2}-4}
$$

Domain: everthy except ± 2

New soft
What is calculus?
\leadsto differential calculus
By question: for the graph $y=f(x)$ and a point $\left(x_{0} f\left(x_{0}\right)\right)$, what is the "tamyn't lime " + graph"?
\rightarrow integral calculus
\sum_{x}

To answer the tayent him problem for function $f(x)$ and point $\left(x_{0}, f\left(x_{0}\right)\right)$, we reed
(1) slope of truest live
(2) a point on tuyunt line The paint $\left(x_{0}, f\left(x_{0}\right)\right)$ is an the $\begin{gathered}\text { trent case. }\end{gathered}$ Point slope form: $\quad y-f\left(x_{0}\right)=m\left(x-x_{0}\right)$???

Our updated gal: find slope of thant lin fie $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$.
idea to solve this: if we examine the slope of the secant live counectiy $\left(x_{0}, f\left(x_{0}\right)\right)$ and $(x, f(x))$, Then That show ld approach slope of the tent as x approcheses x_{0}.

To summarize, the slope of The teyant lime should be the "limit" of the slope of the secant line between $\left(x_{0}, f\left(k_{0}\right)\right)$ and $(x, f(x)) \quad\left(i c\right.$, as x approaches $\left.x_{0}\right)$

$$
\text { " } \lim _{\substack{x \rightarrow x_{0} \\ \text { ais } \\ \text { aymulves } x_{0}}} \frac{f(x)-f\left(x_{0}\right)}{\frac{x-x_{0}}{\text { slope of secant }}}
$$

To make sense of this intuition idea, we med to knew what limit means.
Intuitive Definition (Limit)
We say $\lim _{x \rightarrow a} f(x)=L$ if we can get outputs of $f(x)$ as close to L as we want by making imps sofficicintly clare to (but not equal to !) a.
Note: limits doit care about the value of $f(a)$.

Ex Consider $f(x)$ given by

What is

$$
\lim _{x \rightarrow 3} f(x) ?
$$

4 since outputs get class to 4 as inputs appranch 3.

Ex what is $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$?
when $x \neq 3$
Nate: $\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=x+3$

So we get:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & =\lim _{x \rightarrow 3} x+3 \\
& =6
\end{aligned}
$$

