Practice Problems — 02/25/05

(1) Compute $\frac{d}{dx} [\arctan(\arcsin(x))].$

(2) Compute
$$\frac{d}{dx} [(1+x^2)\arctan(x)].$$

(3) Compute
$$\frac{d}{dx} \left[\arctan(x - \sqrt{1 + x^2}) \right]$$
.

(4) Find
$$\frac{dy}{dx}$$
 for the graph $\sqrt{1 + x^2 y^2} = 2xy$.

(5) Find $\frac{dy}{dx}$ for the graph $e^y = x$ (notice this gives an alternate way to compute $\frac{d}{dx} [\log(x)]$).

(6) Find $\frac{dy}{dx}$ for the graph $\cos(y) = x$ (notice this gives an alternate way to compute $\frac{d}{dx} [\arccos(x)]$).

(7) Find the equation of the line tangent to $y^2 = x^3(2-x)$ at the point (1,1).

(8) Show that the sum of the x- and y-intercepts of any tangent to $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is c.