Practice Problems - 02/25/05

(1) Compute $\frac{d}{d x}[\arctan (\arcsin (x))]$.
(2) Compute $\frac{d}{d x}\left[\left(1+x^{2}\right) \arctan (x)\right]$.
(3) Compute $\frac{d}{d x}\left[\arctan \left(x-\sqrt{1+x^{2}}\right]\right.$.
(4) Find $\frac{d y}{d x}$ for the graph $\sqrt{1+x^{2} y^{2}}=2 x y$.
(5) Find $\frac{d y}{d x}$ for the graph $e^{y}=x$ (notice this gives an alternate way to compute $\frac{d}{d x}[\log (x)]$).
(6) Find $\frac{d y}{d x}$ for the graph $\cos (y)=x$ (notice this gives an alternate way to compute $\left.\frac{d}{d x}[\arccos (x)]\right)$.
(7) Find the equation of the line tangent to $y^{2}=x^{3}(2-x)$ at the point $(1,1)$.
(8) Show that the sum of the $x-$ and y-intercepts of any tangent to $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is c.

