Math 220: Probability and Statistics Chebyshev's Theorem

Example. Suppose that Y is a random variable with mean μ and variance σ^{2}. Find an interval (a, b) - centered at and symmetric about the mean - so that $P(a<Y<b) \geq 0.5$.

Example Suppose, in the example above, that $Y \sim N(0,1)$. Let (a, b) be the interval you computed. What is the actual value of $P(a<Y<b)$ in this case?

Example. Suppose that Y is uniformly distributed along [2,12]. Compare the bound from Chebyshev's Theorem on $P(|Y-7| \geq 3)$ with the actual probability.

Example. Let Y be as in the example above. What does Chebyshev's Theorem tell you about $P(4 \leq Y \leq 10)$? about $P(2<Y<8)$?

