
TESTS FOR CONVERGENCE

Suppose you are given and infinite sequence of terms a0, a1, a2, . . . The notation
∑∞

n=0 an tells you to add
all these terms, as follows: Form the partial sums

S0 = a0

S1 = a0 + a1

...

SN = a0 + a1 + · · ·+ aN =
N∑

n=0

an

and then take the limit of these sums as N → ∞. If this limit exists and is a number, then
∑∞

n=0 an is
called a convergent infinite series. If the limit does not exist, or is ±∞, the series is said to diverge.

WARNING: There are two sequences here:

(i) The terms of the series, a0, a1, a2, . . . , and

(ii) the partial sums S0, S1, S2, . . . , formed by adding more and more of those terms.

With infinite series, it is the limit of the partial sums that concerns us, but to decide if a series converges
or diverges, i.e. to decide whether this limit exists, we will often isolate and look at the terms of the series
as a sequence only, rather than their sum. It is important that you understand this distinction.

OPERATIONS ON SERIES

1.
∞∑

n=0

c an = c
∞∑

n=0

an, for any constant c.

2. If both
∞∑

n=0

an and
∞∑

n=0

bn converge, then
∞∑

n=0

(an + bn) =
∞∑

n=0

an +
∞∑

n=0

bn.

Note: There are no formulas for
∞∑

n=0

anbn or
∞∑

n=0

an

bn
.

IMPORTANT SERIES

1. Geometric:
∞∑

n=0

arn =
a

1− r
, where a is any constant and −1 < r < 1. If r is outside of this

interval, the geometric series diverges. Try to understand the proof of these statements. It will help you
understand what partial sums are, how to take their limit, and it will make you remember what their
formula is in this particular case.

2. Harmonic and Alternating Harmonic:
∑∞

n=1
1
n ,

∑∞
n=1(−1)n 1

n . The harmonic series diverges
(integral test), while the alternating harmonic series converges (alternating series test).

3. p-series:
∞∑

n=1

1
np

, where p is a constant. This series converges if p > 1 and diverges if p ≤ 1. Note

that the harmonic series is a p-series with p = 1.
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You must memorize the above series and when they converge or diverge. Notice that, in a lot of cases, we
do not actually know what these series converge to when they do converge. This is usually not important.
You will mostly only be asked to determine if a given series converges or not, and only if your series looks
like the geometric will you be able to say anything more. Also note that some series start with index n = 0
and some with n = 1 because the term n = 0 might not be defined. Where the index starts does not affect
the convergence. Throwing away or adding in a finite number of terms does not affect the behavior of an
infinite sum.

TESTS FOR CONVERGENCE

1. nth Term Test for Divergence:

If lim
n→∞

an 6= 0, then
∑

an diverges.

Do not turn this around! If lim
n→∞

an = 0, you cannot say anything about the convergence of the series. For
example, look at the p-series for different p’s.

For tests 2–4,
∑

an and
∑

bn have to be series with positive terms.

2. Integral Test:

Suppose that an = f(n), where f is a continuous, positive, and decreasing function. Then
∞∑

n=k

f(n) and
∫ ∞

k
f(x) dx

either both converge or diverge.

Integral test is very powerful but is useless if you do not know how to integrate f(x). But if you do (for
example, if you notice that there is a simple u-substitution hiding in the series), by all means use the
Integral Test. Notice that you need to know how to deal with improper integrals (the ones with ∞ in their
bounds) to use this test properly. Also remember that the value of the integral is not necessarily the sum
of the series.

3. (Direct) Comparison Test:

If
∑

bn converges and an ≤ bn for all n, then
∑

an converges.

If
∑

bn diverges and an ≥ bn for all n, then
∑

an diverges.

4. Limit Comparison Test:

If lim
n→∞

bn

an
exists and is a nonzero number, then both

∑
an and

∑
bn either converge or diverge.

To use the Comparison Tests effectively, you need to notice that a given series “looks like” another series
which is more familiar and which you know converges or diverges. Then you try to fit the two series into
the hypothesis and the conclusion of one of the above Comparison Tests. If you can do it, then you know
the given series does the same thing as the one you compared it to. This is why it is important that you
know the geometric, harmonic, and p-series inside-out because the comparison will almost always be made
with one of these.
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The following test can be used for any series, including those with positive and negative terms.

5. Ratio Test:

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then
∑

an converges.

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1, then
∑

an diverges.

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, no conclusion can be made.

Ratio Test is especially good when the index n is in some power or when factorials appear in the terms of
the series. Taking the ratio of two consecutive terms will then result in a lot of nice cancellations.

We now turn to series which might have some negative terms. The most common type is the alternating
series. As the name suggests, the terms alternate in sign. These series therefore can be written in general
as

∞∑
n=0

(−1)nan ,

where all the an’s are positive. Then we have

7. Alternating Series Test:

If an ≥ an+1 eventually (after finitely many terms) and if lim
n→∞

an = 0, then
∑

(−1)nan converges.

A good way to deal with series with negative terms is to test for absolute convergence. This means
disregard all the minus signs and test the new series of positive terms for convergence. Technically, if the
original series

∑
an has negative terms, try looking at

∑
|an|. If

∑
an is an alternating series, this just

means you can throw out (−1)n from the series. We then have the following useful theorem:

If
∑
|an| converges , so does

∑
an.

In this case, the sum
∑

an is said to converge absolutely. But as usual, there is a warning: If a series
does not converge absolutely, that does not mean it does not converge (see harmonic and alternating
harmonic). If it does in fact converge (which you usually figure out using Alternating Series Test), then it
is said to converge conditionally. On the exams, I will always ask you to check an alternating series for
absolute and conditional convergence.


