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Historical Introduction

The theory of numbers is that branch of mathematics which deals with
properties of the whole numbers,

1,2,3,4,5,...

also called the counting numbers, or positive integers.

The positive integers are undoubtedly man’s first mathematical creation.
It is hardly possible to imagine human beings without the ability to count,
at least within a limited range. Historical record shows that as early as
3500 Bc the ancient Sumerians kept a calendar, so they must have developed
some form of arithmetic. . . o S

By 2500 Bc the Sumerians had developed a number system using 60 as a
base. This was passed on to the Babylonians, who became highly skilled
calculators. Babylonian clay “tablets containing elaborate mathematical
tables have been found, dating back to 2000 Bc.

When ancient civilizations reached a level which provided leisure time
to ponder about things, some people began to speculate about the nature and
properties of numbers. This curiosity developed into a sort of number-
mysticism or numerology, and. even today numbers such as 3,7,11,and 13
are considered omens of good or bad luck. , :

Numbers were used for keeping records and for commercial transactions
for over 2000 years before anyone thought of studying numbers themselves
in a systematic way. The first scientific approach to the study of integers,
that is, the true origin of the theory of numbers, is generally attributed to the
Greeks. Around 600 BC Pythagoras and his disciples made rather thorough
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Historical introduction

studies of the integers. They were the first to classify integers in various ways:

Even numbers: 2,4,6,8,10,12, 14, 16, ...

Odd numbers: 1,3,5,7,9,11,13,15,...

Prime numbers: 2,3,5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71,73,79, 83,89,97, ... ‘

Composite numbers: 4,6, 8,9, 10, 12, 14, 15, 16, 18, 20, ...

A prime number is a number greater than 1 whose only divisors are 1 and
the number itself. Numbers that are not prime are called composite, except
that the number 1 is considered neither prime nor composite.

The Pythagoreans also linked numbers with geometry. They introduced
the idea of polygonal numbers: triangular numbers, square numbers, pen-

tagonal numbers, etc. The reason for this geometrical nomenclature is -

clear when the numbers are represented by dots arranged in the form of
triangles, squares, pentagons, etc., as shown in Figure I1.1. :

Triangular: &
oA A A
3 6 . 10 . 15 21

1 28
Square: - - -
4
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Pentagonal: @
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! 5 12 ) KR st 70

Figure 1.1

Another link with geometry came from the famous Theorem of Pythagoras
which states that in any right triangle the square of the length of the hy-
potenuse is the sum of the squares of the lengths of the two legs (see Figure 1.2).
The Pythagoreans were interested in right triangles whose sides are integers,
as in Figure 1.3. Such triangles are now called Pythagorean triangles. The
corresponding triple of numbers (x, y, z) representing the lengths of the sides
is called a Pythagorean triple.
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X

Figure 1.2

A Babylontan tablet has been found, dating from about 1700 BC, which
cogtains an extensive list of Pythagorean triples, some of the numbers being
quite large. The Pythagoreans were the first to give a method for determining
infinitely many triples. In modern notation it can be described as follows:
Let n be any odd number greater than 1, and let

x=n y=Hn~1), z=4n>+1)

The resulting triple (x, y, z) will always be a Pythagorean triple with z = y
+ 1. Here are some examples:

x 305 7 911 13 15 17 19

y 412 24 40 60 84 112 144 180

z 5 13 25 41 61 85 113 145 181
There are other Pythagorean triples besides these; for example:

x 8 12 16 .20

y 15 35 63 99

z 17 37 65 101

In thes;? gxamples we have z = y + 2. Plato (430—349 BC) found a method for
determining all these triples; in modern notation they are given by the

formulas
x=4n, y=4n* -1, z=4n*+ 1.

Around 300 BC an important event occurred in the history of mathematics.
The appearance of Euclid’s Elements, a collection of 13 books, transformed
mathematics from numerology into a deductive science. Euclid was the
first to present mathematical facts along with rigorous proofs of these facts.

2442 '
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Three of the thirteen books were devoted to thé theory of numbers (Books V11,
IX, and X). In Book IX Euclid proved that there are infinitely many primes.
His proof is still taught in the classroom today. In Book X he gave a method
for obtaining all Pythagorean triples although he gave no proof that his
method did, indeed, give them all. The method can be summarized by the
formulas ‘ ‘

x =ta*—= b, . y=2ab, z=ta®+ b3,

where , a, and b, are arbitrary positive integers such that a > b,a and b have
no prime factors in common, and one of a or b is odd, the other even.

Euclid also made an important contribution to another problem posed
by the Pythagoreans—that of finding all perfect numbers. The number 6
was called a perfect number because 6 = 1 4- 2 + 3, the sum of all its proper
divisors (that is, the sum of all divisors less than 6). Another example of a
perfect number is 28 because 28 = 1 + 2 + 4+ 7 + 14, and 1, 2, 4, 7, and
14 are the divisors of 28 less than 28. The Greeks referred to the proper
divisors of a number as its “parts.” They called 6 and 28 perfect numbers
because in each case the number is equal to the sum of all its parts:

In Book IX, Euclid found all even perfect numbers. He proved that an
even number is perfect if it has the form

_ 2071(2r — 1),
where both p and 2?7 — 1 are primes. ;
Two thousand years later, Euler proved the converse of Euclid's theorem.

That is, every even perfect number must be of Euclid’s type. For example, for
6 and 28 we have

6=2"'22-1N=2.3 and 28 = 23123 - 1) =4.7.
The first five even perfect numbers are
| 6,28,496,8128  and 33,550,336.

* Perfect numbers are: very rare:indeed. At the present time (1983) only 29
perfect numbers are known. They correspond to the following values of p
in Euclid’s formula:

2,3,57,13,17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4233, 4423, 9689, 9941, 11,213, 19,937, 21,701, 23,209, 44,497,
186,243, 132,049
Numbers of the form 27 — 1, where p is prime, are now called Mersenne
numbers and are denoted by M p in honor of Mersenne, who studied them in
1644. It is known that M, is prime for the 29 primes listed above and com-
posite for all values of p < 44,497. For the following primes,

p = 137,139, 149, 199, 227, 257

although M, is composite, no prime factor of M » is khown.
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No odd perfect numbers are known; it is not even known if any exist.
But if any do exist they must be very large; in fact, greater than 10°° (see
Hagis [291]). '

We turn now to a brief description of the history of the theory of numbers
since Euclid’s time.

After Euclid in 300 BC no significant advances were made in number
theory until about ap 250 when another Greek mathematician, Diophantus
of Alexandria, published 13 books, six of which have been preserved. This
was the first Greek work to make systematic use of algebraic symbols.
Although his algebraic notation seems awkward by present-day standards,
Diophantus was able to solve certain algebraic equations involving two or
three unknowns. Many of his problems originated from number theory and it
was natural for him to seek integer solutions of equations. Equations to be
solved with integer values of the unknowns are now called Diophantine
equations, and the study of such equations is known as Diophantine analysis.
The equation x? + y? = 22 for Pythagorean triples. is an example of a
Diophantine equation.

After Diophantus, not much progress was'made in the theory of numbers
until ‘the. seventeenth century, although there is some evidence that the
subject began to flourish in the Far East-—especially in India—in the period
between AD 500-and AD 1200. _

In the seventeenth century the subject was revived in Western Europe,
largely through the efforts of a remarkable French mathematician, Pierre de
Fermat (1601-1665), who is generally acknowledged to be the father .of
modern number theory. Fermat derived much of his inspiration from the
works of Diophantus. He was the first to discover really deep properties of
the integers. For example, Fermat proved the following surprising theorems:

Every integer is either a triangular number or a sum of 2 or 3 triangular
numbers; every integer is either a square or a sum of 2, 3, or 4'squares; every
integer is either a pentagonal number or the sum of 2, 3, 4, or 5 pentagonal
numbers, and so on. »

Fermat also discovered that every prime number of the form 4n + 1
suchas 5, 13, 17, 29, 37, 41, etc,, is a sum of two squares. For example, -

5=12 4 22 13 =22 4 32, 17=1%+42  29=224 52
3M=1+6, 41=42452
Shortly after Fermat’s time, the names of Euler (1707-1783), Lagrange

(1736-1813), Legendre (1752-1833), Gauss (1777-1855), and Dirichlet
(1805-1859) became prominent in the further development of the subject.
The first textbook in number theory was published by Legendre in 1798.

Threc years later Gauss published Disquisitiones Arithmeticae, a book which’

transformed the subject into a systematic and beautiful science. Although he
-made a wealth of contributions to other branches of mathematics, as well
~ as to other sciences, Gauss himself considered his book on number theory

to be his greatest work. '
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In the last hundred years or so since Gauss's time there has been an
intensive development of the subject in many different directions. It would be
impossible to give in a few pages a fair cross-section of the types of problems
that are studied 'in the theory of numbers. The field is vast and some parts
require a profound knowledge of higher mathematics. Nevertheless, there
are many problems in number theory which are very easy to state. Some of
these deal with prime numbers, and we devote the rest of this introduction
to such problems.

- The primes less than 100 have been listed above. A table listing all primes
less than 10 million was published in 1914 by an American mathematician,
D. N. Lehmer [43]. There are exactly 664,579 primes less than 10 million,
or about 63%. More recently D. H. Lehmer (the son of D. N. Lehmer)
calculated the total number of primes less than 10 billion; there are exactly
455,052,511 such primes, or about 449, although not all these primes are
known individually (see Lehmer [41]).

A close examination of a table of primes reveals that they are distributed
in a very irregular fashion. The tables show long gaps between primes. For
example, the prime 370,261 is followed by 111 composite numbers. There are
no primes between 20,831,323 and 20,831,533, It is easy to prove that arbitrar-
ily large gaps between prime numbers must eventually occur.

On the other hand, the tables indicate that consecutive primes, such as
3 and 5, or 101 and 103, keep recurring. Such pairs of primes which differ
only by 2 are known as twin primes. There are over 1000 such pairs below
100,000 and over 8000 below 1,000,000. The largest pair known to date
(see Williams and Zarnke [76]) is 76 - 3'*° — { and 76 -3'3° + 1. Many
mathematicians think there are infinitely many such pairs, but no one has
been able to prove this as yet. ‘ '

One of the reasons for this-irregularity in distribution of primes is that no
simple formula exists for producing all the primes. Some formulas do yield
many primes. For example, the expression

Xt~ x + 41
gives a prime for x = 0, 1, 2, ..., 40, whereas
x? = 79x + 1601
gives a prime for x = 0, 1,2,..., 79. However, no such simple formula can
give a prime for all x, even if cubes and higher powers are used. In fact, in
1752 Goldbach proved that no polynomial in x with integer coefficients can
be prime for all x, or even for all sufficiently large x.
Some polynomials represent infinitely many primes. For example, as

x runs through the integers 0, 1, 2, 3, . .., the linear polynomial

2x + 1
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gives all the odd numbers hence infinitely many primes. Also, each of the
polynomials :

4x +1 . and 4x + 3

represents infinitely many primes. In a famous memoir [15] published in
1837, Dirichlet proved that, if ¢ and b are pusitive integers with no prime
factor in common, the polynomial

ax + b .

gives infinitely many primes as x runs through all the positive integers.
This result is now known as Dirichlet’s theorem on the existence of primes
in a given arithmetical progression. _

To prove this theorem, Dirichlet went outside the realm of integers and
introduced tools of analysis such as limits and continuity. By so doing he
laid the foundations for a new branch of mathematics calied anal ytic number
theory, in which ideas and methods of real and complex analysis are brought
to bear on problems about the integers.

It is not known if there is any quadratic polynomial ax? + bx + ¢ with
a # 0 which represents infinitely many primes. However, Dirichlet [16]
used his powerful analytic methods to prove that, if a, 2b, and ¢ have no
prime factor in common, the quadratic polynomial in two variables

ax? + 2bxy + cy?

represents infinitely mény primes as x and y run through the positive integers.
Fermat thought that the formula 22" + 1 would always give a prime for

n=20,1,2,... These numbers are called Fermat numbers and are denoted
by F,. The first five are

Fo=3, Fi=5  F,=17. Fy=257 andF, = 65537,

and they are all primes. However, in 1732 Euler found that F s 1S composite;
in fact,

Fs =22 + 1 = (641)(6,700,417).

* These numbers are also of interest in plane geometry. Gauss proved that if
F, is-a prime, say F, = p, then a regular polygon of p sides can be con-
tructed with straightedge and compass.

‘Beyond Fy, no further Fermat primes have been found. In fact, for 5 <
" n < 19 each Fermat number F, is composite. Also, F, is known to be com-
< posite for the following further isolated values of n:

n = 21,23, 25,26, 27, 29, 30, 32, 36, 38, 39, 42, 52, 55, 58, 62, 63, 66, 71,
73,77,81,91, 93,99, 117, 125, 144, 147, 150, 201, 207, 215, 226, 228,
250, 255, 267, 268, 284, 287, 298, 316, 329, 416, 452, 544, 556, 692,
744, 1551, 1945, 2023, 2456, 3310, 4724, and 6537.

See Robinson [59] and Wrathall [77]. More recent work is described in
ostin and McLaughlin, Math. Comp. 38 (1982), 645-649.)
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It was mentioned earlier that there is no simple formula that gives all the
primes. In this connection, we should mention a result discovered recently
by Davis, Matijasevi¢, Putnam and Robinson. They have shown hOYV to
construct a polynomial P(x,, ..., x,), all of whose positive values are primes
for nonnegative integer values of x,, .. ., x, and for which the positive values
run through all the primes but the negative values are composite. (See Jones,
Sata, Wada and Wiens, Amer. Math. Monthly 83 (1976),449-65 for references.)

The foregoing results illustrate the irregularity of the distribution of the
prime numbers. Howexer, by examining large blocks of primes one ﬁnd.s
that their average distribution seems to be quite regular. Although there is
no end to the primes, they become more widely spaced, on the average, as
we go further and further in the table. The question of the dimxmsl’gmg
frequency of primes was the subject of much speculation in the early nine-~
teenth century. To study this distribution, we consider a function, denoted
by n(x), which counts the number of primes <x. Thus,

n(x) = the number of primes p satisfying 2 < p < x.

Here is a brief table of this function and its comparison with x/log x, where-
log x'is the natural logarithm of X.

x ) xflogx 7i(x) / 10; -
10 4 43 093
10? 25 217 115
103 168 1448 1.16
104 1,229 1,086 113
10% 9592 8,686 1.10
106 78,498 72,382 1.08
107 664,579 620,420 1.07
108 5,761,455 5,428,681 1.06
10° 50,847,534. 48,254,942 1.05

1019 . 455,052,511 - 434,294,482 1.048

By examining a table like this for x < 10, Gauss [24] and Legendre [40]
proposed independently that for large x the ratio

n(x)/ lo; x

was nearly 1 and they conjectured that this ratio would approach 1 as x
approaches o0. Both Gauss and Legendre attempted to prove this statemeqt
but did not succeed. The problem of deciding the truth or falsehood of this
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conjecture attracted the attention of eminent mathematicians for nearly
100 years. ,

In 1851 the Russian mathematician Chebyshev [9] made an important
step forward by proving that if the ratio did tend to a limit, then this limit
must be 1. However he was unable to. prove that the ratio does tend to a
limit.

In 1859 Riemann [58] attacked the problem with analytic methods, using
a formula discovered by Euler in 1737 which relates the prime numbers to
the function '

|

{s) = ";1 5

for real s > 1. Riemann considered complex values of s and outlined an

ingenious method for connecting the distribution of primes to properties

of the function {(s). The mathematics needed to justify all the details of his

method had not been fully developed and Riemann was unable to com-
pletely settle the problem before his death in 1866.

Thirty years later the necessary analytic tools were at hand and in 1896
J. Hadamard 28] and C. J. de la Vallée Poussin {71] independently and
almost simultaneously succeeded in proving that

lim "OM08X )

X0 x .

This remarkable result is called the prime number theorem, and its proof was
one of the crowning achievements of analytic number theory. ,

In 1949, two contemporary mathematicians, Atle Selberg [62] and Paul
Erdés [19] caused a sensation in the mathematical world when they dis-
covered an elementary proof of the.prime number theorem. Their proof,
though very intricate, makes no use of {(s) nor of complex function theory
and in principle is accessible to anyone familiar with elementary calculus.

One of the most famous problems concerning prime numbers is the
so-called Goldbach conjecture. In 1742, Goldbach [26] wrote to Euler
suggesting that every even number >4 is a sum of two primes. For example

4=2+42  6=3+3 8=3+5
10=3+7=54+5 12=5+7.

This conjecture is undecided to this day, although in recent years some
progress-has been made to indicate that it is probably true. Now why do
mathematicians think it is probably true if they haven’t beén able to prove it?
First of all, the conjecture has been verified by actual computation for all
even numbers less than 33 x 108, It has been found that every even number
greater than 6 and less than 33 x 106 is, in fact, not only the sum of two odd
primes.but the sum of two distinct odd primes (see Shen [66]). But in number
theory verification of a few thousand cases is not enough evidence to con-
vince mathematicians that something is probably true. For example, all the
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oddgrimes fall into two categories, those of the form 4n + 1 and those of the
foem dn + 3. Let nt,(x) denote all the primes < x that are of the.form 4n + 1,
samdJet 74(x) denote the number that are of the form 4n + 3. It is known that

eire:are infinitely many primes of both types. By computation it was found

hatn,(x) < m,4(x) for all x < 26,861. But in 1957, J. Leech [39] fpund that
fox x = 26,861 we have m,(x) = 1473 and 7n4(x) = 1472, so the' inequality
sgeversed. In 1914, Littlewood [49] proved that this inequality reverses

. ®fx) < m3(x) and also infinitely many x for which' na(x) < n,(x?. Con-
%tures about prime numbers can be erroneous even if they are verified by
gomputation in thousands of cases. .
““ Therefore, the fact that Goldbach’s conjecture has been verified for all
even numbers less than 33 x 108 is only a tiny bit of evidence in its favor.
Another way that mathematicians collect evidence apout the truth of
a particular conjecture is by proving other theorems wt}xch are some\_avhat
similar to the conjecture. For example, in 1930 the Russian mathematician
Schnirelmann [61] proved that there is a number M such that every number
n from some point on is a sum of M or fewer primes: ‘

n=p;+p,+--+py (for sufficiently large n).

If we knew that M were equal to 2 for all even n, this would prove Goldbgqh’s
conjecture for all sufficiently large n. In 1956 the Chinese mathematician
Yin Wen-Lin [78] proved that M < 18. That is, every numbgr n fro'm some
point on is a sum of 18 or fewer primes. Schnirelmann’s result is considered a
giant step toward a proof of Goldbach’s conjecture. It was the first real
progress made on this problem in nearly 200 years. ,

A much closer approach to a solution of Goldbach’s problem was made
in 1937 by another Russian mathematician, I. M: Vinogradov [73],. whp
proved that from some point on every odd number is-the sum of three primes:

n=p,+p,+p; (nodd, nsufficiently large).

In fact, this is true for all odd n greater than 33'° (see Borodzkin [5]). To date,
this is the strongest piece of evidence in favor of Goldbach’s conjecture. For
one thing, it is easy to prove that Vinogradov’s theorem is a consequence qf
Goldbach’s statement. That is, if Goldbach’s conjecture is true, then it is
¢asy to deduce Vinogradov’s statement. The big achievement of Vinogradov

“was that he was able to prove his result without using Goldbach’s statement.
Unfortunately, no one has been able to work it the other way around and
prove Goldbach’s statement from Vinogradov’s.

Another piece of evidence in favor of Goldbach’s conjecture was found
in 1948 by the Hungarian mathematician Rényi [57] who proved that there
is a number M such that every sufficiently large even number n can be
written as a prime plus another number which has no more than M distinct
prime factors:

n=p+ A

10
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where 4 has no more than M distinct prime factors (n even, n sufficiently
large). If we knew that M = 1 then Goldbach’s conjecture would be true for all
sufficiently large n. In 1965 A. A. Buhstab [6] and A. I. Vinogradov [72]
proved that M < 3, and in 1966 Chen Jing-run [10] proved that M < 2.

We conclude this introduction with a brief mention of some outstanding
unsolved problems concerning prime numbers.

1. (Goldbach’s problem). Is there an even number >2 which is not the
sum of two primes?

2. Is there an even number > 2 which is not the difference of two primes?

3. Are there infinitely many twin primes?

4. Are there infinitely many Mersenne primes, that is, primes of the form
27 — 1 where p is prime?

5.- Are there infinitely many composite Mersenné numbers?

-6. Are there infinitely many Fermat primes, that is, primes of the form
224+ 17

7. Are there infinitely many composite Fermat numbers?

8. Are there infinitely many primes of the form x2? + 1, where x is an integer?
(Itis known that there are infinitely many of the form x2 + y*,and of the
form x> + y? + 1, and of the form x? + y? + 22 4+ 1).

9. Are there infinitely many primes of the form x? + k, (k given)?

10. Does there always exist at least one prime between n? and (n + 1)? for
every integer n > 1?

11. Does there always exist at least one prime between n? and n® + n for
every integer n > 1?

12. Are there infinitely many primes whose digits (in base 10) are all ones?

(Here are two examples: 11 and 11,111,111,1'11,111,111,111,111.)

The professional mathematician is attracted to number theory because
of the way all the weapons of modern mathematics can be brought to bear on
its problems. As a matter of fact, many important branches of mathematics
had their origin in number theory. For example, the early attempts to prove
the prime number theorem stimulated the development of the theory of
functions of a complex variable, especially the theory of entire functions.
Attempts to prove that the Diophantine equation x" + y" = 2" has no
nontrivial solution if n > 3 (Fermat's conjecture) led to the development of
algebraic number theory, one of the most active areas of modern mathe-
matical research. Even though Fermat's conjecture is still undecided, this
seems unimportant by comparison to the vast amount of valuable mathe-
matics that has been created as a result of work on this conjecture. Another
example is the theory of partitions which has been an important factor in the
development of combinatorial analysis and in the study of modular functions,

There are hundreds of unsolved problems in number theory. New
problems arise more rapidly than the old ones are solved, and many of the
old ones have remained unsolved for centuries. As the mathematician
Sierpinski once said, “...the progress of our knowledge of numbers is
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advanced not only by what we already know about them, but also by realizing
what we yet do not know about them.” -
Note. Every serious student of number theory should become acquainted
with Dickson’s three-volume History of the Theory of Numbers [13], and
LeVeque’s six-volume Reviews in Number Theory [45]. Dickson’s History
gives an encyclopedic account of the entire literature of number theory up
until 1918. LeVeque’s volumes reproduce all the reviews in Volumf:s 1-44 of
Mathematical Reviews (1940-1972) which bear directly on questions com-
monly regarded as part of number theory. These two valuable collections
provide a history of virtually all important discoveries in number theory from

antiquity until 1972.
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The F undamental Theorem of
Arithmetic

1.1 Introduction

This chapter introduces basic concepts of elementary number theory such
as divisibility, greatest common divisor, and prime and composite numbers. _
The principal results are Theorem 1.2, which establishes the existence of
the greatest common divisor of any two integers, and Theorem 1.10 (the
fundamental theorem of arithmetic), which shows that every integer greater
than 1 can be represented as a product of prime factors in only one way
(apart from the order of the factors). Many of the proofs make use of the
following property of integers.

The principle of induction If Q is a set of integers such that

(a) 1eQ,
(b) ne Q impliesn + 1€Q,

then
(c) allintegers >1 belong to Q.

There are, of course, alternate formulations of this principle. For example,
in statement (a), the integer 1 can be replaced by any integer k, provided that
the inequality >1 is replaced by >k ixi (c). Also, (b) can be replaced by the
statement 1,2, 3, ..., n e Q implies (n + 1) € Q.

We assume that the reader is familiar with this principle and its use in
proving theorems by induction. We also assume familiarity with the following
principle, which is logically equivalent to the principle of induction.

The well-ordering principle If A is a nonempty set of positive integers, then A
contains a smallest member.
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