FROM "SECRETS & LIES: DIGITAL SECURITY IN A NETWORKED WORLD" BY BRUCE SCHNEIER 2 # Digital Threats he world is a dangerous place. Muggers are poised to jump you if you walk down the wrong darkened alley, con artists are scheming to relieve you of your retirement fund, and co-workers are out to ruin your career. Organized crime syndicates are spreading corruption, drugs, and fear with the efficiency of Fortune 500 companies. There are crazed terrorists, nutty dictators, and uncontrollable remnants of former superpowers with more firepower than sense. And if you believe the newspapers at your supermarket's checkout counter, there are monsters in the wilderness, creepy hands from beyond the grave, and evil space aliens carrying Elvis's babies. Sometimes it's amazing that we've survived this long, let alone built a society stable enough to have these discussions. The world is also a safe place. While the dangers in the industrialized world are real, they are the exceptions. This can sometimes be hard to remember in our sensationalist age—newspapers sell better with the headline "Three Shot Dead in Random Act of Violence" than "Two Hundred and Seventy Million Americans have Uneventful Day"—but it is true. Almost everyone walks the streets every day without getting mugged. Almost no one dies by random gunfire, gets swindled by flimflam men, or returns home to crazed marauders. Most businesses are not the victims of armed robbery, rogue bank managers, or workplace violence. Less than one percent of eBay transactions—unmediated long-distance deals between strangers—result in any sort of complaint. People are, on the whole, honest; they generally adhere to an implicit social contract. The general lawfulness in our society is high; that's why it works so well. (I realize that the previous paragraph is a gross oversimplification of a complex world. I am writing this book in the United States at the turn of the millennium. I am not writing it in Sarajevo, Hebron, or Rangoon. I have no experiences that can speak to what it is like to live in such a place. My personal expectations of safety come from living in a stable democracy. This book is about the security from the point of view of the industrialized world, not the world torn apart by war, suppressed by secret police, or controlled by criminal syndicates. This book is about the relatively minor threats in a society where the major threats have been dealt with.) Attacks, whether criminal or not, are exceptions. They're events that take people by surprise, that are "news" in its real definition. They're disruptions in the society's social contract, and they disrupt the lives of the victims. ## THE UNCHANGING NATURE OF ATTACKS If you strip away the technological buzzwords and graphical user interfaces, cyberspace isn't all that different from its flesh-and-blood, bricks-and-mortar, atoms-not-bits, real-world counterpart. Like the physical world, people populate it. These people interact with others, form complex social and business relationships, live and die. Cyberspace has communities, large and small. Cyberspace is filled with commerce. There are agreements and contracts, disagreements and torts. And the threats in the digital world mirror the threats in the physical world. If embezzlement is a threat, then digital embezzlement is also a threat. If physical banks are robbed, then digital banks will be robbed. Invasion of privacy is the same problem whether the invasion takes the form of a photographer with a telephoto lens or a hacker who can eavesdrop on private chat sessions. Cyberspace crime includes everything you'd expect from the physical world: theft, racketeering, vandalism, voyeurism, exploitation, extortion, con games, fraud. There is even the threat of physical harm: cyberstalking, attacks against the air traffic control system, etc. To a first approximation, online society is the same as offline society. And to the same first approximation, attacks Digital Threats against digital systems will be the same as attacks against their analog analogues. This means we can look in the past to see what the future will hold. The attacks will look different—the burglar will manipulate digital connections and database entries instead of lockpicks and crowbars, the terrorist will target information systems instead of airplanes—but the motivation and psychology will be the same. It also means we don't need a completely different legal system to deal with the future. If the future is like the past—except with cooler special effects—then a legal system that worked in the past is likely to work in the future. Willie Sutton robbed banks because that was where the money was. Today, the money isn't in banks; it's zipping around computer networks. Every day, the world's banks transfer billions of dollars among themselves by simply modifying numbers in computerized databases. Meanwhile, the average physical bank robbery grosses a little over fifteen hundred dollars. And cyberspace will get even more enticing; the dollar value of electronic commerce gets larger every year. Where there's money, there are criminals. Walking into a bank or a liquor store wearing a ski mask and brandishing a .45 isn't completely passé, but it's not the preferred method of criminals drug-free enough to sit down and think about the problem. Organized crime prefers to attack large-scale systems to make a large-scale profit. Fraud against credit cards and check systems has gotten more sophisticated over the years, as defenses have gotten more sophisticated. Automatic teller machine (ATM) fraud has followed the same pattern. If we haven't seen widespread fraud against Internet payment systems yet, it's because there isn't a lot of money to be made there yet. When there is, criminals will be there trying. And if history is any guide, they will succeed. Privacy violations are nothing new, either. An amazing array of legal paperwork is public record: real estate transactions, boat sales, civil and criminal trials and judgments, bankruptcies. Want to know who owns that boat and how much he paid for it? It's a matter of public record. Even more personal information is held in the 20,000 or so (in the United States) personal databases held by corporations: financial details, medical information, lifestyle habits. Investigators (private and police) have long used this and other data to track down people. Even supposedly confidential data gets used in this fashion. No TV private investigator has survived half a season without a friend in the local police force willing to look up a name or a license plate or a criminal record in the police files. Police routinely use industry databases. And every few years, some bored IRS operator get caught looking up the tax returns of famous people. Marketers have long used whatever data they could get their hands on to target particular people and demographics. In the United States personal data do not belong to the person whom the data are about they belong to the organization that collected it. Your financial information isn't your property, it's your bank's. Your medical information isn't yours, it's your doctor's. Doctors swear oaths to protect your privacy, but insurance providers and HMOs do not. Do you really want everyone to know about your heart defect or your family's history of glaucoma? How about your bout with alcoholism, or that embarrassing brush with venereal disease two decades ago? Privacy violations can easily lead to fraud. In the novel *Paper Moon*, Joe David Brown wrote about the Depression-era trick of selling bibles and other merchandise to the relatives of the recently deceased. Other scams targeted the mothers and widows of overseas war dead—"for only pennies a day we'll care for his grave"—and people who won sweepstakes. In many areas in the country, public utilities are installing telephone-based systems to read meters: water, electricity, and the like. It's a great idea, until some enterprising criminal uses the data to track when people go away on vacation. Or when they use alarm monitoring systems that give up-to-the-minute details on building occupancy. Wherever data can be exploited, someone will try it, computers or no computers. Nothing in cyberspace is new. Child pornography: old hat. Money laundering: seen it. Bizarre cults offering everlasting life in exchange for your personal check: how déclassé. The underworld is no better than businesspeople at figuring out what the Net is good for; they're just repackaging their old tricks for the new medium, taking advantage of the subtle differences and exploiting the Net's reach and scalability. ### THE CHANGING NATURE OF ATTACKS The threats may be the same, but cyberspace changes everything. Although attacks in the digital world might have the same goals and share a lot of the same techniques as attacks in the physical world, they will be very different. They will be more common. They will be more widespread. It will be harder to track, capture, and convict the perpetrators. And their effects will be more devastating. The Internet has three new characteristics that make this true. Any one of them is bad; the three together are horrifying. #### Automation Automation is an attacker's friend. If a sagacious counterfeiter invented a method of minting perfect nickels, no one would care. The counterfeiter couldn't make enough phony nickels to make it worth the time and effort. Phone phreaks were able to make free local telephone calls from payphones pretty much at will from 1960 until the mid-1980s. Sure, the phone company was annoyed, and it made a big show about trying to catch these people—but they didn't affect its bottom line. You just can't steal enough 10-cent phone calls to affect the earnings-pershare of a multibillion-dollar company, especially when the marginal cost of goods is close to zero. In cyberspace, things are different. Computers excel at dull, repetitive tasks. Our counterfeiter could mint a million electronic nickels while he sleeps. There's the so-called *salami attack* of stealing the fractions of pennies, one slice at a time, from everyone's interest-bearing accounts; this is a beautiful example of something that just would not have been possible without computers. If you had a great scam to pick someone's pocket, but it only worked once every hundred thousand tries, you'd starve before you robbed anyone. In cyberspace, you can set your computer to look for the one-in-a-hundred-thousand chance. You'll probably find a couple dozen every day. If you can enlist other computers, you might get hundreds. Fast automation makes attacks with a minimal rate of return profitable. Attacks that were just too marginal to notice in the physical world can quickly become a major threat in the digital world. Many commercial systems just don't sweat the small stuff; it's cheaper to ignore it than to fix it. They will have to think differently with digital systems. Cyberspace also opens vast new avenues for violating someone's privacy, often simply a result of automation. Suppose you have a marketing campaign tied to rich, penguin-loving, stamp-collecting Elbonians with children. It's laborious to walk around town and find wealthy Elbonians with children, who like penguins, and are interested in stamps. On the right computer network, it's easy to correlate a marketing database of zip codes of a certain income with birth or motor vehicle records, posts to rec.collecting.stamps, and penguin-book purchases at Amazon.com. The Internet has search tools that can collect every Usenet posting a person ever made. Paper data, even if it is public, is hard to search and hard to correlate. Computerized data can be searched easily. Networked data can be searched remotely and correlated with other databases. Under some circumstances, looking at this kind of data is illegal. People, often employees, have been prosecuted for peeking at confidential police or IRS files. Under other circumstances, it's called data mining and is entirely legal. For example, the big credit database companies, Experian (formerly TRW), TransUnion, and Equifax, have mounds of data about nearly everyone in the United States. These data are collected, collated, and sold to anyone willing to pay for it. Credit card databases have a mind-boggling amount of information about individuals' spending habits: where they shop, where they eat, what kind of vacations they take—it's all there for the taking. DoubleClick is trying to build a database of individual Web-surfing habits. Even grocery stores are giving out frequent shopper cards, allowing them to collect data about the food-buying proclivities of individual shoppers. Acxiom is a company that specializes in the aggregation of public and private databases. The news here is not that the data are out there, but how easily they can be collected, used, and abused. And it will get worse: More data are being collected. Banks, airlines, catalog companies, medical insurers are all saving personal information. Many Web sites collect and sell personal data. And why not? Data storage is cheap, and maybe it will be useful some day. These diverse data archives are moving onto the public networks. And more and more data are being combined and cross-referenced. Automation makes it all easy. #### Action at a Distance As technology pundits like to point out, the Internet has no borders or natural boundaries. Every two points are adjacent, whether they are across the hall or across the planet. It's just as easy to log on to a computer in Tulsa from a computer in Tunisia as it is from one in Tallahassee. Don't like the censorship laws or computer crime statutes in your country? Find a country more to your liking. Countries like Singapore have tried to limit their citizens' abilities to search the Web, but the way the Internet is built makes blocking off parts of it unfeasible. As John Gilmore opined, "The Internet treats censorship as damage and routes around it." This means that Internet attackers don't have to be anywhere near their prey. An attacker could sit behind a computer in St. Petersburg and attack Citibank's computers in New York. This has enormous security implications. If you were building a warehouse in Buffalo, you'd only have to worry about the set of criminals who would consider driving to Buffalo and breaking into your warehouse. Since on the Internet every computer is equidistant from every other computer, you have to worry about all the criminals in the world. The global nature of the Internet complicates criminal investigation and prosecution, too. Finding attackers adroit at concealing their whereabouts can be near impossible, and even if you do find them, what do you do then? And crime is only defined with respect to political borders. But if the Internet has no physical "area" to control, who polices it? So far, every jurisdiction that possibly can lay a claim to the Internet has tried to. Does the data originate in Germany? Then it is subject to German law. Does it terminate in the United States? Then it had better suit the American government. Does it pass through France? If so, the French authorities want a say in qu'il s'est passé. In 1994, the operators of a computer bulletin board system (BBS) in Milpitas, California—where both the people and the computers resided—were tried and convicted in a Tennessee court because someone in Tennessee made a long-distance telephone call to California and downloaded dirty pictures that were found to be acceptable in California but indecent in Tennessee. The bulletin board operators never set foot in Tennessee before the trial. In July 1997, a 33-year old woman was convicted by a Swiss court for sending pornography across the Internet—even though she had been in the United States since 1993. Does this make any sense? In general, though, prosecuting across jurisdictions is incredibly difficult. Until it's sorted out, criminals can take advantage of the confusion as a shield. In 1995, a 29-year-old hacker from St. Petersburg, Russia, made \$12 million breaking into Citibank's computers. Citibank eventually discovered the break and recovered most of the money, but had trouble extraditing the hacker to stand trial. This difference in laws among various states and countries can even lead to a high-tech form of jurisdiction shopping. Sometimes this can work in the favor of the prosecutor, because this is exactly what the Tennessee conviction of the California BBS was. Other times it can work in the favor of the criminal: Any organized crime syndicate with enough money to launch a large-scale attack against a financial system would do well to find a country with poor computer crime laws, easily bribable police officers, and no extradition treaties. ## Technique Propagation The third difference is the ease with which successful techniques can propagate through cyberspace. HBO doesn't care very much if someone can build a decoder in his basement. It requires time, skill, and some money. But what if that person published an easy way for everyone to get free satellite TV? No work. No hardware. "Just punch these seven digits into your remote control, and you never have to pay for cable TV again." That would increase the number of nonpaying customers to the millions, and could significantly affect the company's profitability. Physical counterfeiting is a problem, but it's a manageable problem. Over two decades ago, we sold the Shah of Iran some of our old intaglio printing presses. When Ayatollah Khomeini took over, he realized that it was more profitable to mint \$100 bills than Iranian rials. The FBI calls them supernotes, and they're near perfect. (This is why the United States redesigned its currency.) At the same time the FBI and the Secret Service were throwing up their hands, the Department of the Treasury did some calculating: The Iranian presses can only print so much money a minute, there are only so many minutes in a year, so there's a maximum to the amount of counterfeit money they can manufacture. Treasury decided that the amount of counterfeit currency couldn't affect the money supply, so it wasn't a serious concern to the nation's stability. If the counterfeiting were electronic, it would be different. An electronic counterfeiter could automate the hack and publish it on some Web site somewhere. People could download this program and start undetectably counterfeiting electronic money. By morning it could be in the hands of 1,000 first-time counterfeiters; another 100,000 could have it in a week. The U.S. currency system could collapse in a week. Instead of there being a maximum limit to the damage this attack can do, in cyberspace, damage could grow exponentially. The Internet is also a perfect medium for propagating successful attack tools. Only the first attacker has to be skilled; everyone else can use his software. After the initial attacker posts it to an archive—conveniently located in some backward country—anyone can download and use it. And once the tool is released, it can be impossible to control. We've seen this problem with computer viruses: Dozens of sites let you download computer viruses, computer virus construction kits, and computer virus designs. And we've seen the same problem with hacking tools: software packages that break into computers, bring down servers, bypass copy protection measures, or exploit browser bugs to steal data from users' machines. Internet worms are already making floppy-disk-borne computer viruses look like quaint amusements. It took no skill to launch the wave of distributed denial-of-service attacks against major Web sites in early 2000; all it took was downloading and running a script. And when digital commerce systems are widespread, we'll see automated attacks against them too. Computer-based attacks mean that criminals don't need skill to succeed. ### PROACTION VS. REACTION Traditionally, commerce systems have played catch-up in response to fraud: online credit card verification in response to an increase in credit card theft, other verification measures in response to check fraud. This won't work on the Internet, because Internet time moves too quickly. Someone could figure out a successful attack against an Internet credit card system, write a program to automate it, and within 24 hours it could be in the hands of half a million people all over the world—many of them impossible to prosecute. I can see a security advisor walking into the CEO's office and saying: "We have two options. We can accept every transaction as valid, both the legitimate and fraudulent ones, or we can accept none of them." The CEO would be stuck with this Hobson's choice. 3 ## Attacks I'm going to discuss three broad classes of attacks. Criminal attacks are the most obvious, and the type that I've focused on. But the others—publicity attacks and legal attacks—are probably more damaging. #### CRIMINAL ATTACKS Criminal attacks are easy to understand: "How can I acquire the maximum financial return by attacking the system?" Attackers vary, from lone criminals to sophisticated organized crime syndicates, from insiders looking to make a fast buck to foreign governments looking to wage war on a country's infrastructure. #### Fraud Fraud has been attempted against every commerce system ever invented. Unscrupulous merchants have used rigged scales to shortchange their customers; people have shaved silver and gold off the rims of coins. Everything has been counterfeited: currency, stock certificates, credit cards, checks, letters of credit, purchase orders, casino chips. Modern financial systems—checks, credit cards, and automatic teller machine networks—each rack up multi-million-dollar fraud losses per year. Electronic commerce will be no different; neither will the criminals' techniques. Scams According to the National Consumers League, the five most common online scams are sale of Internet services, sale of general merchandise, auctions, pyramid and multilevel marketing schemes, and business opportunities. People read some enticing e-mail or visit an enticing Web site, send money off to some post office box for some reason or another, and end up either getting nothing in return or getting stuff of little or no value. Sounds just like the physical world: Lots of people get burned. #### Destructive Attacks Destructive attacks are the work of terrorists, employees bent on revenge, or hackers gone over to the dark side. Destruction is a criminal attack—it's rare that causing damage to someone else's property is legal—but there is often no profit motive. Instead, the attacker asks: "How can I cause the most damage by attacking this system?" There are many different kinds of destructive attacks. In 1988, someone wrote a computer virus specifically targeted against computers owned by Electronic Data Systems. It didn't do too much damage (actually, it did more damage to NASA), but the idea was there. In early 2000, we watched distributed denial-of-service attacks against Yahoo!, Amazon.com, E*Trade, Buy.com, CNN, and eBay. A deft attacker could probably keep an ISP down for weeks. In fact, a hacker with the right combination of skills and morals could probably take down the Internet. At the other end of the spectrum, driving a truck bomb through a company's front window works too. The United States' attacks against Iraqi communications systems in the Persian Gulf are probably the best example of this. The French terrorist group Comité Liquidant ou Détournant les Ordinateurs (Computer Liquidation and Deterrence Committee) bombed computer centers in the Toulouse region in the early 1980s. More spectacular was the burning of the Library of Alexandria in 47 B.C. (by Julius Caesar), in A.D. 391 (by the Christian emperor Theodosius I), and in A.D. 642 (by Omar, Caliph of Baghdad): All excellent lessons in the importance of off-site backups. ## Intellectual Property Theft Intellectual property is more than trade secrets and company databases. It's also electronic versions of books, magazines, and newspapers; digital videos, music, and still images; software; and private databases available to the public for a fee. The difficult problem here is not how to keep private data private, but how to maintain control and receive appropriate compensation for proprietary data while making it public. Software companies want to sell their software to legitimate buyers without pirates making millions of illegal copies and selling them (or giving them away) to others. In 1997, the Business Software Alliance had a counter on its Web page that charted the industry's losses due to piracy: \$482 a second, \$28,900 a minute, \$1.7 million an hour, \$15 billion a year. These numbers were inflated, since they make the mendacious assumption that everyone who pirates a copy of (for example) Autodesk's 3D Studio MAX would have otherwise paid \$2,995—or \$3,495 if you use the retail price rather than the street price—for it. The prevalence of software piracy greatly depends on the country: It is thought that 95 percent of the software in the People's Republic of China is pirated, while only 50 percent of the software in Canada is pirated. (Vietnam wins, with 98 percent pirated software.) Software companies, rightfully so, are miffed at these losses. Piracy happens on different scales. There are disks shared between friends, downloads from the Internet (search under warez to find out more about this particular activity), and large-scale counterfeiting operations (usually run in the Far East). Piracy also happens to data. Whether it's pirated CDs of copyrighted music hawked on the backstreets of Bangkok or MP3 files of copyrighted music peddled on the Web, digital intellectual property is being stolen all the time. (And, of course, this applies to digital images, digital video, and digital text just as much.) The common thread here is that companies want to control the dissemination of their intellectual property. This attitude, while perfectly reasonable, is contrary to what the digital world is all about. The physics of the digital world is different: Unlike physical goods, information can be in two places at once. It can be copied infinitely. Someone can both give away a piece of information and retain it. Once it is dispersed hither and thither, it can be impossible to retrieve. If a digital copy of *The Lion King* ever gets distributed over the Internet, Disney will not be able to delete all the copies. Unauthorized copying is not a new problem; it's as old as the recording industry. In school, I had cassette tapes of music I couldn't afford to buy; so did everyone else I knew. Taiwan and Thailand have long been a source of counterfeit CDs. The Russian Mafia has become a player in the pirated video industry, and the Chinese triads are becoming heavily involved in counterfeit software. Industry losses were estimated to be \$11 billion per year, although the number is probably based on some imaginative assumptions, too. Digital content has no magic immunity from counterfeiters. In fact, it's unique in that it can be copied perfectly. Unlike my cassette tapes, an illegal DVD of *The Lion King* or a software product isn't degraded in quality; it's another original. Counteracting that is like trying to make water not wet; it just doesn't work. ## Identity Theft Why steal from someone when you can just become that person? It's far easier, and can be much more profitable, to get a bunch of credit cards in someone else's name, run up large bills, and then disappear. It's called identity theft, and it's a high-growth area of crime. One Albuquerque, New Mexico, criminal ring would break into homes specifically to collect checkbooks, credit card statements, receipts, and other financial mail, looking for Social Security numbers, dates of birth, places of work, and account numbers. This is scary stuff, and it happens all the time. There were thousands of cases of identity theft reported in the United States during 1999 alone. Dealing with the aftermath can be an invasive and exhaustive experience. It's going to get worse. As more identity recognition goes electronic, identity theft becomes easier. At the same time, as more systems use electronic identity recognition, identity theft becomes more profitable and less risky. Why break into someone's house if you can collect the necessary identity information online? And people are helpful. They give out sensitive information to anyone who asks; many print their driver's license numbers on their checks. They throw away bills, bank statements, and so forth. They're too trusting. For a long time, we've gotten by with an ad hoc system of remote identity. "Mother's maiden name" never really worked as an identification system (especially now, given the extensive public databases on genealogical Web sites). Still, the fiction worked as long as criminals didn't take too much advantage of it. That's history now, and we'll never get back to that point again. ## Brand Theft Virtual identity is vital to businesses as well as individuals. It takes time and money to develop a corporate identity. This identity is more than logos and slogans and catchy jingles. It's product, bricks-and-mortar buildings, customer service representatives—things to touch, people to talk to. Brand equals reputation. On the Internet, the barrier to entry is minimal. Anyone can have a Web site, from Citibank to Fred's Safe-Money Mattress. And everyone does. How do users know which sites are worth visiting, worth bookmarking, worth establishing a relationship with? Thousands of companies sell PCs on the Web. Who is real, and who is fly-by-night? Branding is the only answer to this question. When the Web first entered the public eye, pundits claimed that it heralded the end of the big brand. Because anyone could go on the Web and compete with the big names, brands were meaningless. The reality is exactly the opposite. Since anyone can go on the Web and compete with the big names, the only way to tell products apart is by their brands. Users look at brands, and they return to the sites they trust. A brand has real value, and it's worth stealing. An example: A Malaysian company wanted to market condoms using the "Visa" brand. They claimed that it had nothing to do with the credit card company, but was a pun on "permit to entry." Visa was unamused, and sued. It won, and I believe this ruling has profound implications for brand ownership. Cyberspace has many opportunities for brand theft. In 1998, someone forged a domain-name transfer request to Network Solutions and stole sex.com; the original owner is still trying to get it back. Another recent case involved a plumber who rerouted customer phone calls for another plumber to his own number. Organized crime syndicates in Las Vegas have done the same thing with escort-service phone numbers. This kind of attack is nothing new. Almon Strowger was an undertaker in Kansas City. He was convinced that telephone operators were rerouting telephone calls to rival businesses, so he invented the dial telephone in 1887 to bypass the operators. Some merchants have designed their Web sites to steal traffic away from other Web sites; this is known as page-jacking. Also on the net are typo pirates, who register a domain name just a typo away from legitimate Web sites. Many porn sites do that. Big companies are not above these kinds of tactics: when MCI's 1-800-COLLECT became popular, AT&T set up a collect-calling service on 1-800-COLLECT, with a zero instead of the letter O, the most common misdial. MCI stooped to the same tactic, registering 1-800-0PERATOR, with a zero instead of AT&T's O. Some of these tactics are illegal today; I expect more will be in the future. #### Prosecution Unfortunately, prosecution can be difficult in cyberspace. On the one hand, the crimes are the same. Theft is illegal, whether analog or digital, online or offline. So is trespassing, counterfeiting, racketeering, swindling, stalking, and a criminal-code worth of other things. The laws against these practices, complete with the criminal justice infrastructure to enforce them, are already in place. Some new laws have been passed, specifically for the digital world, but we don't know the full ramifications of those laws. The court system doesn't work on Internet time. In the United States, it can take a decade to erase a bad law, or to figure out how a law should really be applied. Over time, the laws will better reflect the reality of the digital world. A few years ago, when a group of German hackers was caught breaking into U.S. computer systems, the German government had no criminal laws to charge them with. Today, some criminal statutes specifically make it a crime to break into remote computer systems, because the old trespassing statues didn't deal well with trespassers sitting comfortably in their bedrooms while their computer commands "trespassed" via the telephone network. Likewise, statutes on stalking, invasions of privacy, copyright, and solicitation are being modified for a world where things don't work exactly like they used to. Eventually, people will realize that it doesn't make sense to write laws that are specific to a technology. Fraud is fraud, whether it takes place over the U.S. mail, the telephone, or the Internet. A crime is no more or less of a crime if cryptography is involved. (The New York sales clerk who, in 1999, used a Palm Pilot to copy customers' credit card numbers would be no less guilty if he used a pen and paper.) And extortion is no better or worse if carried out using computer viruses or old-fashioned compromising photos. Good laws are written to be independent of technology. In a world where technology advances much faster than congressional sessions, this is what can work today. Faster and more responsive mechanisms for legislation, prosecution, and adjudication . . . maybe someday. #### PRIVACY VIOLATIONS Privacy violations are not necessarily criminal, but they can be. (They can be a prelude to identity theft, for example.) In the United States, most privacy violations are legal. People do not own their own data. If a credit bureau or a marketing research firm collects data about you—your personal habits, your buying patterns, your financial status, your physical health—it can sell it to anyone who wants it without your knowledge or consent. It's different elsewhere. Privacy laws in much of Europe (including the European Union), Taiwan, New Zealand, and Canada are more restrictive. Other types of privacy violations are legal, too. Hiring a private investigator to collect information on a person or a company is legal, as long as the investigator doesn't use any illegal methods. All sorts of privacy violations by the police are legal with a warrant, and many are legal without. (Did you know that in the United States police don't need a warrant to demand a copy of the photographs you dropped off for developing?) There are two types of privacy violations—targeted attacks and data harvesting—and they are fundamentally different. In a targeted attack, an attacker wants to know everything about Alice. If "Alice" is a person, it's called stalking. If "Alice" is a company, it's called industrial espionage. If "Alice" is a government, it's called national intelligence or spying. All of these will get you thrown in jail if you use some techniques, but not if you use others. Computer security can protect Alice against a targeted attack, but only up to a point. If attackers are well enough funded, they can always get around computer security measures. They can install a bug in Alice's office, rummage through Alice's trash, or spy with a telescope. Information is information, and computer security only protects the informa- tion while it is on computers. What computer security protects against are non-invasive attacks. It forces the attacker to get close to Alice and makes privacy violations riskier, more expensive, and subject to different laws. Data harvesting is the other type of privacy violation. This attack harnesses the power of correlation. Suppose an attacker wants a list of every widow, 70 years or older, with more than \$1 million in the bank, who has given to more than eight charities in the past year, and who subscribes to an astrological magazine. Or a list of everybody in the United States who has been prescribed AZT. Or who views a particular socialist Web site. Although con artists have collected names of people who might be susceptible to particular scams for over a century, the prevalence of databases on the Internet allows them to automate and better target their searches. Good cryptography and computer security can help protect against data-harvesting attacks (assuming it is illegal to simply buy the data from those who own the various databases) by making the collection problem intractable. Data harvesting is worthwhile only because it can be automated; it makes no sense to sort through an entire neighborhood's trashcans to cull a demographic. If all computerized data is protected, an attacker doesn't even know where to look. Even moderate levels of cryptography can protect absolutely against data harvesting. #### Surveillance One hundred years ago, everyone could have personal privacy. You and a friend could walk into an empty field, look around to see that no one else was nearby, and have a level of privacy that has forever been lost. As Whitfield Diffie has said: "No right of private conversation was enumerated in the Constitution. I don't suppose it occurred to anyone at the time that it could be prevented." The ability to have a private conversation, like the ability to keep your thoughts in your head and the ability to fall to the ground when pushed, was a natural consequence of how the world worked. Technology has demolished that world view. Powerful directional microphones can pick up conversations hundreds of yards away. In the aftermath of the MRTA terrorist group's takeover of the Japanese embassy in Peru (1997), news reports described audio bugs being hidden in shirt buttons that allowed police to pinpoint everyone's location. Van Eck devices can read what's on your computer monitor from halfway down the street. (Right now this is an expensive and complicated attack, but just wait until wireless LANs become popular.) Pinhole cameras—now being sold in electronics catalogs—can hide in the smallest cracks; satellite cameras can read your license plate from orbit. And the Department of Defense is prototyping micro air vehicles, the size of small birds or butterflies, that can scout out enemy snipers, locate hostages in occupied buildings, or spy on just about anybody. The ability to trail someone remotely has existed for a while, but it is only used in exceptional circumstances (except on TV). In 1993, Colombian drug lord Pablo Escobar was identified partly by tracking him through his cellular phone usage: a technique known as pinpointing. In 1996, the Russian Army killed Chechnyan leader Dzholar Dudayev with an air-to-surface missile after pinpointing his location from the transmissions of his personal satellite phone. The FBI found the truck belonging to the Oklahoma City federal building's bomber because agents collected the tapes from every surveillance camera in the city, correlated them by time (the explosion acted as a giant synch pulse), and looked for it. Invisible identification tags are printed on virtually all color xerographic output, from all of the manufacturers. (These machines also include anticounterfeiting measures, such as dumping extra cyan toner onto images when the unit detects an attempt to copy U.S. currency.) Explosives have embedded taggants. The technology to automatically search for drug negotiations in random telephone conversations, for suspicious behavior in satellite images, or for faces on a "wanted list" of criminals in on-street cameras isn't commonplace yet, but it's just a matter of time. Face recognition will be able to pick individual people out of a crowd. Voice recognition will be able to scan millions of telephone calls listening for a particular person; it can already scan for suspicious words or phrases and pick conversations out of a crowd. Moore's Law, which predicts the industry can double the computing power of a microchip every 18 months, affects surveillance computing just as it does everything else: The next generation will be smaller, faster, a lot cheaper, and more easily available. As soon as the recognition technologies isolate the people, the computers will be able to do the searching. Storage is getting cheaper, too. We're only a few generations away from being able to record our entire lives—in audio and video—and save the data. It could be introduced as a preemptive defense mechanism, "in case you ever need to prove an alibi," or a public-good mechanism, because "you never know when you'll be the witness to a crime." Someday not wearing your life recorder may be cause for suspicion. The surveillance infrastructure is being installed in our country under the guise of "customer service." Who hasn't heard the ubiquitous message that "this conversation may be monitored or recorded for quality assurance purposes"? Some hotels track guest preferences in international databases, so that customers will feel at home even if it is their first stay in a particular city. High-end restaurants now have video cameras in the dining room, to study diners' eating habits and meal progress, and databases of customer preferences. Amazon.com tracks the buying behavior of different demographic groups. Melissa virus writer David Smith was identified because Microsoft Word automatically embeds identity information in all documents. Automatic toll-collection systems keep records of what cars went through different tollbooths. In 2000, some cities started measuring highway congestion by tracking motorists by their cell phones. There's a fine line between good customer service and stalking. Sometimes there's no customer-service spin: Credit card companies keep detailed purchasing records so they can reduce fraud. Companies monitor employee Web site surfing to limit abuse and liability. Many airports record the license plates of everyone who uses the parking lot—Denver International Airport records the plates of everyone who enters airport grounds—as a security measure. GPS, the satellite-based Global Positioning System, is a dream technology for surveillance. At least two companies are marketing a smart automobile locator, based on GPS. One company is selling an automatic warehouse inventory system, using GPS and affixable transmitters on objects. The transmitters broadcast their location, and a central computer keeps track of where everything is. Spies have probably been able to use this kind of stuff for years, but it's now a consumer item so Dad knows where Junior is taking the car. Individual privacy is being eroded from a variety of directions. Most of the time, the erosions are small, and no one kicks up a fuss. But less and less privacy is available, and most people are completely oblivious of it. Surveillance devices are getting cheaper and smaller and more ubiq- uitous. It is plausible that we could soon be living in a world without expectation of privacy, anywhere or at any time. #### Databases Historically, privacy was only about surveillance. Then, in the 1960s, society reached a watershed. Computers with large databases entered business, and organizations started keeping databases on individuals. Recently, we've reached a second watershed: Networked computers are allowing disparate databases to be shared, correlated, and combined. The effects of these databases on personal privacy are still to be felt. We've managed to successfully beat back Big Brother, only to lose to a network of Little Brothers. For the first time, someone can be unsurveillably surveilled. Recently, more and more data is being collected and saved, both because data collection is cheaper and because people leave more electronic footprints in their daily lives. More of it is being collected and cross-correlated. And more of it is available online. The upshot is that it is not difficult to collect a detailed dossier on someone. Many of these databases are commercial: large credit databases owned by Experian, TransUnion, and Equifax; telephone databases of individual calls made; credit card databases of individual purchases. The information can be used for its original intent or sold for other purposes. Those legitimately allowed to can access it, and it is potentially available to those adroit enough to break into the computers. This can be correlated with other databases: your health information, your financial details, any lifestyle information you've made public. In 1999, there was a small press flare-up because some public television stations traded donor lists with the Democratic Party. In 2000, public furor forced DoubleClick to reverse its plans to correlate Web-surfing records with individual identities. The Web provides even more potential for invasions of privacy. Online stores can, in theory, keep records of everything you buy. (Blockbuster, for example, has a database of every video you've rented.) They can also keep records of everything you look at: every item you ask to see more information about, every topic you search for, how long you spend looking at each item . . . not just what you buy, but what you look at and don't buy. Online law enforcement databases are a great boon to the police—it really helps to be able to automatically download a criminal record or mugshot directly to a squad car—but privacy fears remain. Police databases are not much more secure than any other commercial database, and the information is a lot more sensitive. ## Traffic Analysis Traffic analysis is the study of communication patterns. Not the content of the messages themselves, but characteristics about them. Who communicates with whom? When? How long are the messages? How quickly are the replies sent, and how long are they? What kinds of communications happen after a certain message is received? These are all traffic analysis questions, and their answers can reveal a lot of information. For example, if each time Alice sends a long message to Bob, Bob sends a short reply back to Alice and a long message to five other people, this indicates a chain of command. Alice is clearly sending orders to Bob, who is relaying them to his subordinates. If Alice sends regular short messages to Bob, and suddenly sends a series of long ones, this indicates that something (what?) has changed. Often the patterns of communication are just as important as the contents of communication. For example, the simple fact that Alice telephones a known terrorist every week is more important than the details of their conversation. The Nazis used the traffic-analysis data in itemized French phone bills to arrest friends of the arrested; they didn't really care what the conversations were about. Calls from the White House to Monica Lewinsky were embarrassing enough, even without a transcription of the conversation. In the hours preceding the U.S. bombing of Iraq in 1991, pizza deliveries to the Pentagon increased one hundredfold. Anyone paying attention certainly knew something was up. (Interestingly enough, the CIA had the same number of pizzas delivered as any other night.) Some studies have shown that even if you encrypt your Web traffic, traffic analysis based on the size of the encrypted Web pages is more than enough to figure out what you're browsing. While militaries have used traffic analysis for decades, it is still a new area of study in the academic world. We don't really know how vulnerable our communications—especially our Internet communications— are to traffic analysis, and what can be done to reduce the risks. Expect this to be an important area of research in the future. #### Massive Electronic Surveillance ECHELON is a code word for an automated global interception system operated by the intelligence agencies of the United States, the United Kingdom, Canada, Australia, and New Zealand, and led by the National Security Agency (NSA). I've seen estimates that ECHELON intercepts as many as 3 billion communications everyday, including phone calls, e-mail messages, Internet downloads, satellite transmissions, and so on. The system gathers all of these transmissions indiscriminately, then sorts and distills the information through artificial intelligence programs. Some sources have claimed that ECHELON sifts through 90 percent of the Internet's traffic, although that seems doubtful. This kind of massive surveillance effort is daunting, and provides some unique problems. Surveillance data is only useful when it is distilled to a form that people can understand and act upon. The United States intercepted a message to the Japanese ambassador in Washington, D.C., discussing the Pearl Harbor bombing, but the information only made sense in retrospect and never made it past the low-level clerks. But as difficult as analysis is, even more difficult is the simple decision of what to record. Potential ECHELON intercepts are an unending firehose of data: more than any group of human analysts can ever analyze. The interception equipment must decide, in real time, whether or not any piece of data is worth recording for later analysis. And the system cannot afford to do much "later analysis"; there's always more data being recorded. I'm sure much valuable intelligence has been recorded that a human will never scrutinize. To build a system like this, you would have to invest in two technologies: diagnostic capabilities and traffic analysis. Interception equipment must to be able to quickly characterize a piece of data: who the sender and receiver are, the topic of conversation, how it fits in any larger pattern of communication. (If you think this is hard for Internet e-mail, think how hard it is for voice conversations.) Much of this technology is similar to what you might find in a search engine. Traffic analysis is even more important. Traffic patterns reveal a lot about any organization and are much easier to collect and analyze than actual communications data. They also provide additional information to a diagnostic engine. Elaborate databases of traffic patterns are undoubtedly the heart of any ECHELON-like system. One last note: In a world where most communications are unencrypted, encrypted communications are probably routinely recorded. The mere indication that the conversers do not want to be overheard would be enough to raise an alarm. #### PUBLICITY ATTACKS The publicity attack is conceptually simple: "How can I get my name in the newspapers by attacking the system?" This type of attack is relatively new in the digital world: A few years ago, computer hacks weren't considered newsworthy, and I can't think of any other technology in history that people would try to break simply to get their names in the paper. In the physical world, this attack is ancient: The man who burned down the Temple of Artemis in ancient Greece did so because he wanted his name to be remembered forever. (His name was Herostratus, by the way.) More recently, the kids who shot up Columbine High School wanted infamy. Most attackers of this type are hackers: skilled individuals who know a lot about systems and their security. They often have access to significant resources, either as students of large universities or as employees of large companies. They usually don't have a lot of money, but sometimes have a lot of time. Furthermore, they are not likely to do anything that will put them in jail; the idea is publicity, not incarceration. The canonical example of this is the breaking of Netscape Navigator's encryption scheme by two Berkeley graduate students in 1995. These students didn't use the weakness for ill-gotten gain; they called the New York Times. Netscape's reaction was something on the order of "We did some calculations, and thought it would take umpteen dollars of computing power; we didn't think it was worth anyone's trouble to break it." They were right; it wasn't worth anyone's trouble . . . anyone who was interested in the money. The grad students had all sorts of skills, access to all the unused computer time at their university, and no social lives. What's important for system designers to realize is that publicity seekers don't fall into the same threat model that criminals do. Criminals will only attack a system if there's a profit to be made; publicity seekers will attack a system if there is a good chance the press will cover it. Attacks against large-scale systems and widely fielded products are best. Sometimes these attacks are motivated by a desire to fix the problems. Many companies ignore security vulnerabilities unless they are made public. Once the researcher announces the attack, the victim company will scurry to fix the problem. In this way, attacks increase the security of systems. Publicity attacks can be costly. Customers may desert one system in favor of another after a publicity attack, as has happened in the wake of several attacks against banking systems. And investors might desert the victim's stock. This has happened in the digital cellular industry after publicity attacks exposed weaknesses in various privacy and antitheft measures. Citibank lost several high-profile accounts after the St. Petersburg hack. The DVD security break delayed a Sony product launch past the 1999 Christmas season. In 2000, CD Universe lost a lot of customers after a hacker stole 300,000 credit card numbers off of its Web site. Sometimes the bad press is more costly than the actual theft. Publicity attacks have other dangers. One is that criminals will learn about these attacks and exploit them. Another is that public confidence in the systems will be eroded by the announcements. This could be a major problem in electronic commerce systems in particular. Banks like to keep successful criminal attacks against their systems quiet, so as not to alarm the public. But hackers and academics are much harder to keep quiet and are going to be all over commerce systems once they're fielded. If there are security holes anywhere, someone is going to find them and call a press conference. Maybe not the first person who finds them, but someone will. Companies need to be prepared. Defacing someone's Web page is one form of publicity attack. It used to be big news. The 1996 hack of the Department of Justice Web site made the news. So did the 1997 hack of the AirTran site, and the 1998 hack of the *New York Times* main page. In those days, the publicity was such that some sites didn't wait to be hacked. MGM/Universal Studios was thrilled when the Web site for its movie *Hackers* was hacked in 1995. And in 1997, Universal Pictures hacked its own Web site for *Jurassic Park: The Lost World* as a publicity stunt. (They tried to pretend it was hackers, but the parody site looked too professional, and the hacked page was uploaded to the site three days before the legitimate site came online.) These days it happens so often that it barely rates a mention in the news. Probably every major U.S. government Web site was hacked in 1999, as were the Web sites of many local and foreign governments. I listed 65 Web site defacements in the first week of March 2000 in Chapter 1. Sysadmins have become inured to the problem. ## Denial-of-Service Attacks More recently, denial-of-service attacks have become the publicity attack du jour. This is only because of their massive press coverage, and will hopefully become old news, too. The idea is simply to stop something from working. And as anyone who has had to deal with the effects of striking workers—bus drivers, air traffic controllers, farm laborers, and so forth—can tell you, these attacks are effective. There are other denial-of-service attacks in the physical world: boycotts and blockades, for example. These attacks all have analogues in cyberspace. Someone with enough phone connections can tie up all the modem connections of a local ISP. The analog cell phone networks had trouble freeing connections when a mobile user went from cell to cell; it was possible to sit on a hill with a directional antenna and, by spinning it around and around slowly, tie up all the channels in the nearby cells. Denial-of-service attacks work because computer networks are there to communicate. Some simple attack, like saying hello, can be automated to the point where it becomes a denial-of-service attack. This is basically the SYN flood attack that brought down several ISPs in 1996. Here's another denial-of-service attack: In the mid-1980s, Jerry Falwell's political organization set up a toll-free number for something or other. One guy programmed his computer to repeatedly dial the number and then hang up. This did two things: It busied the phone lines so that legitimate people could not call the number, and it cost Falwell's organization money every time a call was completed. Nice denial-of-service attack. Denial-of-service attacks can be preludes to criminal attacks. Burglars approach a warehouse at 1:00 A.M. and cut the connection between the burglar alarm and the police station. The alarm rings, and the police are alerted that the connection has been broken. Burglars retreat a safe distance and wait for the police to arrive. Police arrive and find nothing. (If the burglars are inventive, they cut the connection in some way that isn't obvious.) Police decide that it's a problem with the system, and the warehouse owner decides to deal with it in the morning. Police leave. Burglars reappear and steal everything. A variant on this, which insurers have noted on several occasions, is to attack the telephone exchange that routes the alarm signals. Many alarms have a *heartbeat* back to the monitoring station, and call the police if the signal is interrupted. By attacking the exchange, every alarm is triggered and the police don't know which alarm to respond to. Here's another example: a military base protected by a fence and motion sensors. The attackers take a rabbit and throw it over the fence; then they leave. The motion sensors go off. The guards respond, find nothing, and return to their posts. The attackers do this again, and the guards respond again. After a few nights of this, the guards turn the motion sensors off. And the attackers drive a jeep right through the fence. This kind of thing was done repeatedly against the Russian military bases in Afghanistan, and in tests against several U.S. military bases. It's surprisingly successful. A similar attack was supposedly done against the Soviet embassy in Washington, D.C. The Americans fired a Canada Mint (basically, a sugar pellet) against the window. The rattle set off an alarm, but the sugar ball disintegrated and there was nothing to respond to. Then another ball. Thwap. Alarm. Nothing. Eventually the alarms were modified so that banging against the window didn't trigger them. (I don't know if any actual penetration resulted from this attack, or if it was just to nettle the Soviets.) Closer to home, it's a common auto-theft technique to set a car alarm off at 2:00 A.M., 2:10, 2:20, 2:30 . . . until the owner turns the alarm off to appearse the angry neighbors. In the morning, the car is gone. Warfare uses denial-of-service attacks all the time. Each side tries to jam the other's radar systems and missile guidance systems, disrupt communications systems, and blow up bridges. One of the characteristics of denial-of-service attacks is that low-tech is often better than high-tech: Blowing up a computer center works much better than exploiting a Windows 2000 vulnerability. Internet denial-of-service attacks are discussed in detail in Chapter 11. #### LEGAL ATTACKS In 1994, in the United Kingdom, a man found his bank account emptied. When he complained about six withdrawals he did not make, he was arrested and charged with attempted fraud. The British bank claimed that the security in the ATM system was infallible, and that the defendant was unequivocally guilty. When the defense attorney examined the evidence, he found (1) that the bank had no security management or quality assurance for its software, (2) that there was never any external security assessment, and (3) that the disputed withdrawals were never investigated. In fact, the bank's programmers claimed that since the code was written in assembly language, it couldn't possibly be the problem (because if there was a bug, it would cause a system crash). The man was convicted anyway. On appeal, the bank provided the court a huge security assessment by an auditing firm. When the defense demanded equal access to their systems in order to evaluate the security directly, the bank refused and the conviction was overturned. Attacks that use the legal system are the hardest to protect against. The aim here isn't to exploit a flaw in a system. It isn't even to find a flaw in a system. The aim here is to persuade a judge and jury (who probably aren't technically savvy) that there *could* be a flaw in the system. The aim here is to discredit the system, to put enough doubt in the minds of the judge and jury that the security isn't perfect, to prove a client's innocence. Here's a hypothetical example. In a major drug case, the police are using data from a cellular phone that pinpoints the defendant's phone at a particular time and place. The defense attorney finds some hacker expert who testifies that it is easy to falsify that kind of data, that it isn't reliable, that it could have been planted, and should not be counted as evidence. The prosecution has its own set of experts that say the opposite, and one possible outcome is that they cancel each other out and the trial goes on without the cellular-phone evidence. The same thing can happen to audit data being used to prosecute someone who broke into a computer system, or signature data that is being used to try to enforce a contract. "I never signed that," says the defendant. "The computer told me to enter my passphrase and then push this button. That's what I did." A jury of the defendant's peers— probably just as befuddled by technology as the accused is claiming to be—is likely to sympathize. The other side of the coin can be just as damaging. The police can use experts to convince a jury that a decrypted conversation is damning even though it is not 100 percent accurate, or that the computer intrusion detection is infallible and therefore the defendant is guilty. When used to its fullest effect, the legal attack is potent. The attackers are likely to be extremely skilled—in high-profile cases, they can afford the best security researchers—and well-funded. They can use the discovery process to get all the details of the target system that they need. And the attack doesn't even have to work operationally; the attackers only have to find enough evidence to adduce a flaw. Think of it as a publicity attack with a bankroll and more relaxed victory conditions. 4 ## Adversaries o who is threatening the digital world anyway? Hackers? Criminals? Child pornographers? Governments? The adversaries are the same as they are in the physical world: common criminals looking for financial gain, industrial spies looking for a competitive advantage, hackers looking for secret knowledge, military-intelligence agencies looking for, well, military intelligence. People haven't changed; it's just that cyberspace is a new place to ply their trades. We can categorize adversaries in several ways: objectives, access, resources, expertise, and risk. Adversaries have varying objectives: raw damage, financial gain, information, and so on. This is important. The objectives of an industrial spy are different from the objectives of an organized-crime syndicate, and the countermeasures that stop the former might not even faze the latter. Understanding the objectives of likely attackers is the first step toward figuring out what countermeasures are going to be effective. Adversaries have different levels of access; for example, an insider has much more access than someone outside the organization. Adversaries also have access to different levels of resources: some are well funded; others operate on a shoestring. Some have considerable technical expertise; others have none. Different adversaries are willing to tolerate different levels of risk. Terrorists are often happy to die for their cause. Criminals are willing to risk jail time, but probably don't want to sacrifice themselves to the higher calling of bank robbery. Publicity seekers don't want to go to jail. A wealthy adversary is the most flexible, since he can trade his resources for other things. He can gain access by paying off an insider, and expertise by buying technology or hiring experts (maybe telling them the truth, maybe hiring them under false pretenses). He can also trade money for risk by executing a more sophisticated—and therefore more expensive—attack. The rational adversary—not all adversaries are sane, but most are rational within their frames of reference—will choose an attack that gives him a good return on investment, considering his budget constraints: expertise, access, manpower, time, and risk. Some attacks require a lot of access but not much expertise: a car bomb, for example. Some attacks require a lot of expertise but no access: breaking an encryption algorithm, for example. Each adversary is going to have a set of attacks that is affordable to him, and a set of attacks that isn't. If the adversary is paying attention, he will choose the attack that minimizes his cost and maximizes his benefits. ## HACKERS The word hacker has several definitions, ranging from a corporate system administrator adept enough to figure out how computers really work to an ethically inept teenage criminal who cackles like Beavis and Butthead as he trashes your network. The word has been co-opted by the media and stripped of its meaning. It used to be a compliment; then it became an insult. Lately, people seem to like "cracker" for the bad guys, and "hacker" for the good guys. I define a hacker as an individual who experiments with the limitations of systems for intellectual curiosity or sheer pleasure; the word describes a person with a particular set of skills and not a particular set of morals. There are good hackers and bad hackers, just as there are good plumbers and bad plumbers. (There are also good bad hackers, and bad good hackers . . . but never mind that.) Hackers are as old as curiosity, although the term itself is modern. Galileo was a hacker. Mme. Curie was one, too. Aristotle wasn't. (Aristotle had some theoretical proof that women had fewer teeth than men. A hacker would have simply counted his wife's teeth. A good hacker would have counted his wife's teeth without her knowing about it, Adversaries while she was asleep. A good bad hacker might remove some of them, just to prove a point.) When I was in college, I knew a group similar to hackers: the key freaks. They wanted access, and their goal was to have a key to every lock on campus. They would study lockpicking and learn new techniques, trade maps of the steam tunnels and where they led, and exchange copies of keys with each other. A locked door was a challenge, a personal affront to their ability. These people weren't out to do damage—stealing stuff wasn't their objective—although they certainly could have. Their hobby was the power to go anywhere they wanted to. Remember the phone phreaks of yesteryear, the ones who could whistle into payphones and make free phone calls. Sure, they stole phone service. But it wasn't like they needed to make eight-hour calls to Manila or McMurdo. And their real work was secret knowledge: The phone network was a vast maze of information. They wanted to know the system better than the designers, and they wanted the ability to modify it to their will. Understanding how the phone system worked—that was the true prize. Other early hackers were ham-radio hobbyists and model-train enthusiasts. Richard Feynman was a hacker; read any of his books. Computer hackers follow these evolutionary lines. Or, they are the same genus operating on a new system. Computers, and networks in particular, are the new landscape to be explored. Networks provide the ultimate maze of steam tunnels, where a new hacking technique becomes a key that can open computer after computer. And inside is knowledge, understanding. Access. How things work. Why things work. It's all out there, waiting to be discovered. Today's computer hackers are stereotypically young (twenty-something and younger), male, and socially on the fringe. They have their own counterculture: hacker names or handles, lingo, rules. And like any subculture, only a small percentage of hackers are actually smart. The real hackers have an understanding of technology at a basic level, and are driven by a desire to understand. The rest are talentless poseurs and hangers-on, either completely inept or basic criminals. Sometimes they're called *lamers* or *script kiddies*. Hackers can have considerable expertise, often greater than that of the system's original designers. I've heard lots of security lectures, and the most savvy speakers are the hackers. For them, it's a passion. Hackers look at a system from the outside as an attacker, not from the inside as a designer. They look at the system as an organism, as a coherent whole. And they often understand the attacks better than the people who designed the systems. The real hackers, that is. Hackers generally have a lot of time, but few financial resources. (Put one of them to work at a big company, and that will change.) Some of them are risk averse and tread gingerly around the edges of the law, but others have no fear of prosecution and engage in illegal activities with no consideration of the risk involved. There are hacker newsgroups, hacker Web sites and hacker conventions. Hackers often trade attacks and automated attacking tools among themselves. There are different hacker groups (or gangs, if you are less kind), but there is no hierarchy. You can't galvanize the hacker community against a particular target; hackers go after what they can. Often they'll hack something because it's widely deployed, interesting, or because the target "deserves" it. Unfortunately, much of what hackers do is illegal. I'm not talking about the few who work in research environments, who evaluate the security of systems in laboratory settings, and who publish analyses of products and systems. I'm talking about the hackers who break into other people's networks, deface Web pages, crash computers, spread viruses, and write automatic programs that let other people do these things. These people are criminals, and society needs to treat them as such. I don't buy the defense that a hacker just broke in a system to look around, and didn't do any damage. Some systems are frangible, and simply looking around can inadvertently cause damage. And once an unauthorized person has been inside a system, you can't trust its integrity. You don't know that the intruder didn't touch anything. Imagine that you come home to find a note on your refrigerator door saying: "Hi. I noticed that you had a lousy front door lock, so I broke in. I didn't touch anything. You really should get a better security system." How would you feel? The problem starts with the hackers who write hacking tools. These are programs—sometimes called *exploits*—that automate the process of breaking into systems. An example is the Trin00 distributed denial-of-service tool. Thousands of servers have been brought down because of this attack, and it's caused legitimate companies millions of dollars in time and effort to recover from. It's one thing to research the vulnera- Adversaries bility of the Internet against this type of attack, and to write a research paper about defending against it. It's another thing entirely to write a program that automates the attack. The Trin00 exploit serves no conceivable purpose other than to attack systems. Gun owners can argue self-defense, but Internet servers don't break into anyone's house at night. It's actually much worse, because once an exploit is written and made available, any wannabe hacker can download it and attack computers on the Internet. He doesn't even have to know how it works. (See why they're called "script kiddies"?) Trin00 attacks were popular in early 2000 because the exploit was available. If it weren't—even if a research paper were available—none of the script kiddies would be able to exploit the vulnerability. Certainly the lamers that use Trin00 to attack systems are criminals. I believe the person who wrote the exploit is, too. A fine line exists between writing code to demonstrate research and publishing attack tools; between hacking for good and hacking as a criminal activity. I will get back to this in Chapter 22. Most organizations are wary about hiring hackers, and rightfully so. There are exceptions—the NSA offering scholarships to hackers willing to work at Fort Meade, Israeli intelligence hiring Jewish hackers from the United States, Washington offering security fellowships—and some hackers have gone on to form upstanding and professional security companies. Recently, a handful of consulting companies have sprung up to whitewash hackers and present them in a more respectable light. And sometimes this works, but for many people it can be hard to tell the ethical hackers from the criminals. #### LONE CRIMINALS In April 1993, a small group of criminals wheeled a Fujitsu model 7020 automated teller machine into the Buckland Hills Mall in Hartford, Connecticut, and turned it on. The machine was specially programmed to accept ATM cards from customers, record their account numbers and PINs, and then tell the unfortunate consumers that no transactions were possible. A few days later, the gang encoded the stolen account numbers and PINs onto counterfeit ATM cards, and started withdrawing cash from ATMs in midtown Manhattan. They were eventually caught when the bank correlated the use of the counterfeit ATM cards with routine surveillance films. It was a shrewd attack, and much higher tech than most banking crimes. One innovative criminal in New Jersey attached a fake night deposit box to a bank wall, and took it away early in the morning. It's worse elsewhere. A few years ago, an ATM was stolen in South Africa . . . from inside police headquarters in broad daylight. Lone criminals cause the bulk of computer-related crimes. Sometimes they are insiders who notice a flaw in a system and decide to exploit it; other times they work outside the system. They usually don't have much money, access, or expertise, and they often get caught because of stupid mistakes. Someone might be smart enough to install a fake ATM and collect account numbers and PINs, but if he brags about his cleverness in a bar and gets himself arrested before cleaning out all the accounts . . . well, it's hard to have any sympathy for him. Look at the two public Internet attacks of early 2000. Someone manages to gain access to over ten thousand credit card numbers, with names and addresses. The best crime he can think of to do: extortion. Someone else manages to control a large number of distributed computers, ready to do his bidding. The best crime he can think of: irritate major Web sites. Lone criminals will target commerce systems because that's where the money is. Their techniques may lack elegance, but they will steal money, and they will cost even more money to catch and prosecute. And there will be a lot of them. #### MALICIOUS INSIDERS A malicious insider is a dangerous and insidious adversary. He's already inside the system he wants to attack, so he can ignore any perimeter defenses around the system. He probably has a high level of access, and could be considered trusted by the system he is attacking. Remember the Russian spy Aldrich Ames? He was in a perfect position within the CIA to sell the names of U.S. operatives living in Eastern Europe to the KGB; he was trusted with their names. Think about a programmer writing malicious code into the payroll database program to give himself a raise every six months. Or the bank vault guard purposely missetting the time lock to give his burglar friends easy access. Insiders can be impos- sible to stop because they're the exact same people you're forced to trust. Here's a canonical insider attack. In 1978, Stanley Mark Rifkin was a consultant at a major bank. He used his insider knowledge of (and access to) the money transfer system to move several million dollars into a Swiss account, and then to convert that money into diamonds. He also programmed the computer system to automatically erase the backup tapes that contained evidence of his crime. (He would have gotten away with it, except that he bragged to his lawyer, who turned him in.) Insiders don't always attack a system; sometimes they subvert a system for their own ends. In 1991, employees at Charles Schwab in San Francisco used the company's e-mail system to buy and sell cocaine. A convicted child rapist working in a Boston-area hospital stole a co-worker's password, paged through confidential patient records, and made obscene phone calls. Insiders are not necessarily employees. They can be consultants and contractors. During the Y2K scare, many companies hired programmers from China and India to update old software. Rampant xenophobia aside, any of those programmers could have attacked the systems as an insider. Most computer security measures—firewalls, intrusion detection systems, and so on—try to deal with the external attacker, but are pretty much powerless against insiders. Insiders might be less likely to attack a system than outsiders are, but systems are far more vulnerable to them. An insider knows how the systems work and where the weak points are. He knows the organizational structure, and how any investigation against his actions would be conducted. He may already be trusted by the system he is going to attack. An insider can use the system's own resources against itself. In extreme cases the insider might have considerable expertise, especially if he was involved in the design of the systems he is now attacking. Revenge, financial gain, institutional change, or even publicity can motivate insiders. They generally also fit into another of the categories: a hacker, a lone criminal, or a national intelligence agent. Malicious insiders can have a risk tolerance ranging from low to high, depending on whether they are motivated by a "higher purpose" or simple greed. Of course, insider attacks aren't new, and the problem is bigger than cyberspace. If the e-mail system hadn't been there, the Schwab employ- ees might have used the telephone system, or fax machines, or maybe even paper mail. ## INDUSTRIAL ESPIONAGE Business is war. Well, it's kind of like war, but it has referees. The referees establish the rules—what is legal and what isn't—and do their best to enforce them. Sometimes, if a business has enough money and clout, it can petition to the referees and get the rules changed. Usually, it just plays within them. The line where investigative techniques stop being legal and start being illegal is where competitive intelligence stops and industrial espionage starts. The line moves from jurisdiction to jurisdiction, but there are gross generalities. Breaking into a competitor's office and stealing files is always illegal (even for Richard Nixon); looking them up in a news article database is always legal. Bribing their senior engineers is illegal; hiring them is legal. Hiring them and having them bring a copy of the competitor's source code is illegal. Pretending to want to hire their senior engineers so that you can interview them . . . that's legal, pretty sleazy, and really clever. Industrial espionage attacks have precise motivations: to gain an advantage over the competition by stealing competitors' trade secrets. In one public example, Borland accused Symantec of stealing trade secrets via a departing executive. In another case, Cadence Design Systems filed suit against competitor Avant! for, among other things, stealing source code. In 1999, online bookseller Alibris pled guilty to eavesdropping on Amazon.com corporate e-mail. Companies from China, France, Russia, Israel, the United States, and elsewhere have stolen technology secrets from foreign competitors. Industrial espionage can be well-funded; an amoral but rational company will devote enough resources toward industrial espionage to achieve an acceptable return on investment. Even if stealing a rival's technology costs you half a million dollars, it could be one-tenth the cost of developing the technology yourself. (Ever wonder why the Russian Space Shuttle looks a whole lot like the U.S. Space Shuttle?) This kind of adversary has a medium risk tolerance because a company's reputation (an intangible but valuable item) will be damaged considerably if Adversaries it is caught spying on the competition—but desperate times can bring desperate measures. #### PRESS Think of the press as a subspecies of industrial spy, but with different motivations. The press isn't interested in a competitive advantage over its targets; it is interested in a "newsworthy" story. This would be the Washington City Pages publishing the video rental records of Judge Bork (which led to the Video Privacy Protection Act of 1988), the British tabloids publishing private phone conversations between Prince Charles and Camilla Parker Bowles, or a newspaper doing an exposé on this company or that government agency. It can be worth a lot of newspaper sales to get pictures of a presidential candidate like Gary Hart with a not-his-wife on his lap. Even marginally compromising photographs of Princess Di were worth over half a million dollars. Some reporters have said that they would not think twice about publishing national security secrets; they believe the public's right to know comes first. In many countries, the free press is viewed as a criminal. In such countries, the press is usually not well funded, and generally more the victim of attack than the attacker. Journalists have gone to jail, been tortured, and have even been killed for daring to speak against the ruling government. This is not what I mean by the press as an attacker. In industrial countries with reasonable freedoms, the press can bring considerable resources to bear on attacking a particular system or target. They can be well funded; they can hire experts and gain access. And if they believe their motivations are true, they can tolerate risk. (Certainly the reporters who broke the Watergate story fall into this category.) Reporters in the United States and other countries have gone to jail to protect what they believe is right. Some have even died for it. #### ORGANIZED CRIME Organized crime is a lot more than Italian Mafia families and Francis Ford Coppola movies. It's a global business. Russian crime syndicates operate both in Russia and in the United States. Asian crime syndicates operate both at home and abroad. Colombian drug cartels are also international. Nigerian and other West African syndicates have captured 70 percent of the Chicago heroin market. Polish gangsters run an elaborate car theft operation, stealing cars in the United States and shipping them back to Poland. Of course, there are turf battles between rival gangs, but there is a lot of international cooperation, too. Organized crime's core competencies haven't changed much this century: drugs, prostitution, loan sharking, extortion, fraud, and gambling. And they use technology in two ways. First, it's a new venue for crime. They use hacking tools to break into bank computers and steal money; they steal cell phone IDs and resell them; they engage in computer fraud. Identity theft is a growth area; Chinese gangs are industry leaders here. Certainly electronic theft is more profitable: One big Chicago bank lost \$60,000 in 1996 to bank robbers, and \$60 million to check-related fraud. The mob also uses computers to assist its core businesses. Illegal gambling is easier to run: Cell phones allow bookies to operate from anywhere, and hair-trigger computers can erase all evidence within seconds of a raid. And money laundering is increasingly a business of computers and electronic funds transfers: moving money from one account to another to a third, changing ownership of accounts, disguising the money's origins, moving it through countries that keep less detailed records. In terms of risk, organized crime is what you get when you combine lone criminals with a lot of money and organization. These guys know that you have to spend money to make money, and are willing to invest in profitable attacks against a financial system. They have minimal expertise, but can purchase it. They have minimal access, but they can purchase it. They often have a higher risk tolerance than lone criminals; the pecking order of the crime syndicate often forces those in the lower ranks to take greater risks, and the protection afforded by the syndicate makes the risks more tolerable. ## POLICE You can think of the police as kind of like a national intelligence organization, except that they are less well funded, less technically savvy, and focused on crimefighting. Understand, though, that depending on how Adversaries benevolent the country is and whether or not they hold occasional democratic elections, "crimefighting" could cover a whole lot of things not normally associated with law enforcement. Maybe they're more like the press, but with better funding and a readership that only cares about true crime stories. Or maybe you can think of them as organized crime's industrial competitor. In any case, police have a reasonable amount of funding and expertise. They're pretty risk averse—no cop wants to die for his beliefs—but since they have the laws on their side, things that are risks to some groups can be less risky to the police. (Having a warrant issued, for example, turns eavesdropping from a risky attack to a valid evidence-gathering tool.) Their primary goal is information gathering, with information that stands up in court being more useful than information that doesn't. But police aren't above breaking the law. The fundamental assumption is that we trust the individual or some government to respect our privacy and to only use their powers wisely. While this is true most of the time, abuses are regular and can be pretty devastating. A spate of illegal FBI wiretaps in Florida and a subsequent cover-up got some press in 1992; the 150 or so illegal wiretaps by the Los Angeles Police Department have gotten more. (Drugs were involved, of course; more than one person has pointed out that the war on drugs seems to be the root password to the U.S. Constitution.) J. Edgar Hoover regularly used illegal wiretaps to keep tabs on his enemies. And 25 years ago a sitting president used illegal wiretaps in an attempt to stay in power. Things seem to have improved since the days of Hoover and Nixon, and I have many reasons to hope we won't be back there again. But the risk remains. Technology moves slowly, but intentions change quickly. Even if we are sure today that the police will follow all privacy legislation, eavesdrop only when necessary, obtain all necessary warrants, follow proper minimization procedures, and generally behave like upstanding public servants, we don't know about tomorrow. The same kind of reactive crisis thinking that led us to persecute suspected Communists during the McCarthy era could again sweep across the country. Census data is, by law, not supposed to be used for any other purpose. Even so, it was used during World War II to round up Japanese Americans and put them in concentration camps. The eerily named "Mississippi Sovereignty Commission" spied on thousands of civil rights activists in the 1960s. The FBI used illegal wiretaps to spy on Martin Luther King, Jr. A national public-key infrastructure could be a precursor to national registration of cryptography. Once the technology is in place, there will always be the temptation to use it. And it is poor civic hygiene to install technologies that could someday facilitate a police state. #### TERRORISTS This category is a catchall for a broad range of ideological groups and individuals, both domestic and international. There's no attempt to make moral judgments here: One person's terrorist is another person's freedom fighter. Terrorist groups are usually motivated by geopolitics or (even worse) ethnoreligion—Hezbollah, Red Brigade, Shining Path, Tamil Tigers, IRA, ETA, FLNC, PKK, UCK—but can also be motivated by moral and ethical beliefs, such as those of Earth First and radical antiabortion groups. These groups are generally more concerned with causing harm than gathering information, so their techniques run more along the lines of denial of service and outright destruction. While their long-term goals are usually something vaguely reasonable, like the reunification of Gondwanaland or the return of all cows to the wild, their near-term goals are things like revenge, chaos, and blood-soaked publicity. Bombings are a favorite; kidnappings also work well. It makes a big international splash when a DC-10 falls out of the sky or an abortion clinic is blown to bits, but eventually these guys will figure out that a lot more damage is done when O'Hare air traffic control starts vectoring planes into each other. Or that if they can hack the airline reservation system to find out which 747 is taking the congressional delegation to the south of France this summer, their bombing will be all that much more effective. There are actually very few terrorists. Their attacks are acts of war more than anything else, and probably should be in the "infowarrior" category. And since terrorists generally consider themselves to be personally in a state of war, they have a very high risk-tolerance. Unless they have a rich idealist funding their actions, most terrorists operate on a shoestring budget. Most of them are unskilled: "You there. Carry this bag. Walk into the middle of that busy market. Push this button. See you in the glorious afterlife." There are exceptions (some of the organizations in the first paragraph are well-organized, well-trained, and well-supported—it is believed that the counterfeit TV descramblers sold in Ireland helped finance the IRA, for example), but the majority of groups don't have good organization or access. And they tend to make stupid mistakes. #### NATIONAL INTELLIGENCE ORGANIZATIONS These are the big boys. The CIA, NSA, DIA, and NRO in the United States (there are others), the KGB (now FAPSI for counter-intelligence and FSB for foreign intelligence) and GRU (military intelligence) in Russia, MI5 (counter-intelligence), MI6 (like the CIA), and GCHQ (like the NSA) in the United Kingdom, DGSE in France, BND in Germany, Ministry of National Security in China (also called the "Technical Department"), Mossad in Israel, CSE in Canada. For most of the other adversaries, this is all a game: break into a Web site, gain some competitive intelligence, steal some money, cause a little mayhem, whatever. For these guys, it's very real. A major national intelligence organization is the most formidable adversary around. It is extremely well funded, since it is usually considered a branch of the military. (Although the exact number is a secret, the press reports that "congressional sources" put the combined budgets of the CIA, Defense Intelligence Agency, NSA, the National Reconnaissance Office, and other federal intelligence agencies as \$33.5 billion in 1997.) It is a dedicated and capable adversary, with the funding to buy a whole lot of research, equipment, expertise, and plain old skilled manpower. On the other hand, a major national intelligence organization is usually highly risk averse. National intelligence organizations don't like to see their names on the front page of the *New York Times*, and generally don't engage in risky activities. (Exceptions, of course, exist; they're the ones you read about on the front page of the *New York Times*.) Exposed operations cause several problems. One, they expose the data. National intelligence is based on gathering information that the country should not know. It's eavesdropping on a negotiating position, sneaking a peek at a new weapons system, knowing more than the adversary does. If the adversary learns what the intelligence organization knows, some of the benefit of that knowledge is lost. Two, and probably more important, botched operations expose techniques, capabilities, and sources. For many years the NSA eavesdropped on Soviet car phones as the Politburo drove around Moscow. Someone leaked information about Khrushchev's health in the newspapers, and suddenly the car phones were encrypted. The newspapers didn't say anything about car phones, but the KGB wasn't stupid. The leak here wasn't that we knew about Khrushchev's health, but that we were listening to their communications. The same thing happened after some terrorists bombed a Berlin disco in 1986. Reagan announced that we had proof of Libya's involvement, compromising the fact that we were able to eavesdrop on their embassy traffic to and from Tripoli. During World War II, the Allies couldn't use much of the intelligence gleaned from decrypting German Enigma traffic out of fear that the Germans would change their codes. Intelligence objectives include everything you'd normally think about—military information, weapons designs, diplomatic information—and a lot of things you wouldn't. The telephone system is probably a gold mine of intelligence information; so is the Internet. Several national intelligence organizations are actively engaged in industrial espionage (the FBI estimates "up to 20" are targeting U.S. companies) and passing the information gained to rival companies in their own countries. China is the world's worst offender, France and Japan are also bad, and there are others. The United States is not above this. A 1999 EU report gives several examples, including the following: - In 1994, the Brazilian government awarded a \$1.4 billion contract to Raytheon Corporation, rather than two French companies. Raytheon supposedly altered its bid when it learned of details of the French proposals. - In 1994, McDonnell Douglas Corporation won a Saudi Arabia contract over Airbus Industrie, supposedly based on inside information passed from U.S. intelligence. Former CIA director R. James Woosley has admitted using ECHE-LON information about foreign companies using bribes to win foreign contracts to help "level the playing field," passing the information to U.S. companies and pressuring the foreign governments to stop the bribes. None of this is proven, though. Certainly any company that loses a bid is going to look for reasons why it wasn't its fault, and none Adversaries of the "victims" have said anything in public. Still, the possibilities are disturbing. And this kind of stuff is even worse in cyberspace. ECHELON is not the only program that targets the Internet. Singapore and China eavesdrop on Internet traffic in their countries (China uses its national firewall, the Great Wall). Internet service providers across Russia are helping the main KGB successor agencies to read private e-mails and other Internet traffic, as part of an internal espionage program called SORM-2. National intelligence organizations are not above using hacker tools, or even hackers, to do their work. The Israeli and Japanese governments both have programs to bring hackers into their country, feed them pizza and Jolt Cola, and have them do intelligence work. Other governments go onto the Net and taunt hackers, trying to get them to work for free. "If you're so good you'll have the password to this government computer"—that sort of thing works well if directed against a talented teenager with no self-esteem. The Cuckoo's Egg by Clifford Stoll is about the exploits of three hackers who worked for the KGB in exchange for cash and cocaine. The techniques of national security agencies are varied and, with the full weight of a nation behind them, can be very effective. British communications security companies have been long rumored to build exploitable features into their encryption products, at the request of British intelligence. In 1997, CIA director George Tenet mentioned (in passing, without details) using hacker tools and techniques to disrupt international money transfers and other financial activities of Arab businessmen who support terrorists. The possibilities are endless. #### INFOWARRIORS Yes, it's a buzzword. But it's also real. An infowarrior is a military adversary who tries to undermine his target's ability to wage war by attacking the information or network infrastructure. Specific attacks range from subtly modifying systems so that they don't work (or don't work correctly) to blowing up the systems completely. The attacks could be covert, in which case they might resemble terrorist attacks (although a good infowarrior cares less about publicity than results). If executed via the Internet, the attacks could originate from foreign soil, making detection and retaliation much more difficult. This adversary has all the resources of a national intelligence organization, but differs in two important areas. One, he focuses almost exclusively on the short-term goal of affecting his target's ability to wage war. And two, he is willing to tolerate risks that would be intolerable to long-term intelligence interests. His objectives are military advantage and, more generally, chaos. Some of the particular targets that might interest an infowarrior include military command and control facilities, telecommunications, logistics and supply facilities and infrastructure (think "commercial information systems"), and transportation lines (think "commercial aviation"). These kinds of targets are called *critical infrastructure*. In 1999, NATO targeted Belgrade's electric plants; this had profound effects on its computing resources. In retaliation, Serbian hackers attacked hundreds of U.S. and NATO computer sites. Chinese hackers crashed computers in the Department of the Interior, the Department of Energy, and the U.S. embassy in Beijing in retaliation for our accidental bombing of their embassy in Belgrade. China and Taiwan engaged in a little cyberwar through most of 1999, attacking each other's computers over the Internet (although this was probably not government coordinated on either side). In the past, military and civilian systems were separate and distinct: different hardware, different communications protocols, different everything. Over the past decade, this has shifted; advances in technology are coming too fast for the military's traditional multiyear procurement cycle. More and more, commercial computer systems are being used for military applications. This means that all of the vulnerabilities and attacks that work against commercial computers may work against militaries. And both sides of a conflict may be using the same equipment and protocols: TCP/IP, Windows operating systems, GPS satellite receivers. The U.S. Air Force's Strategic Air Command (SAC) recently switched to Windows NT on its external networks. Militaries have waged war on infrastructure ever since they started waging war. Medieval knights killed serfs, Napoleonic armies burned crops, Allied bombers targeted German factories during World War II. (Ball bearing factories were a favorite.) Today, information is infrastructure. During Desert Storm, the Americans systematically destroyed Iraq's command and control infrastructure. Communications systems were jammed; individual communications cables were bombing targets. Without command and control, the ground troops were all but useless. The media hype surrounding infowar is embarrassing, but the militaries of the world are taking this seriously. Here is a quote from the Chinese Army newspaper, *Jiefangjun Bao*, a summary of speeches delivered in May 1996: After the Gulf War, when everyone was looking forward to eternal peace, a new military revolution emerged. This revolution is essentially a transformation from the mechanized warfare of the industrial age to the information warfare of the information age. Information warfare is a war of decisions and control, a war of knowledge, and a war of intellect. The aim of information warfare will be gradually changed from "preserving oneself and wiping out the enemy" to "preserving oneself and controlling the opponent." Information warfare includes electronic warfare, tactical deception, strategic deterrence, propaganda warfare, psychological warfare, network warfare, and structural sabotage. Under today's technological conditions, the "all conquering stratagems" of Sun Tzu more than two millennia ago—"vanquishing the enemy without fighting" and subduing the enemy by "soft strike" or "soft destruction"—could finally be truly realized. War isn't necessarily a major conflict like World War II or the oft-feared United States versus USSR, Armageddon. More likely, it is a "low-intensity conflict": Desert Storm, the Argentine invasion of the Falklands, civil war in Rwanda. In *The Transformation of War*, Martin van Creveld points out that so-called low-intensity conflicts have been the dominant form of warfare since World War II, killing over 20 million people worldwide. This shift is a result of two main trends. One, it is easier for smaller groups to lay their hands on weapons of mass destruction: chemical weapons, biological weapons, long-range missiles, and so forth. Two, more nonnation states are capable of waging war. In fact, the distinction between nation and nonnation states is blurring. Organized crime groups are merging with government at various levels in countries such as Mexico, Colombia, and Russia. Infowarriors don't all work for major industrial nations. Increasingly, they work for minor political powers. 5 ## Security Needs hat kinds of security do we need, anyway? Before examining (and often dismissing) specific countermeasures against the threats we've already talked about, let's stop and talk about needs. In today's computerized, international, interconnected, interdependent world, what kind of security should we expect? #### PRIVACY People have a complicated relationship with privacy. When asked to pay for it, they often don't want to. Businesses also have a complicated relationship with privacy. They want it—they know the importance of not having their dirty laundry spread all over the newspapers—and are even willing to pay for it: with locks, alarms, firewalls, and corporate security policies. But when push comes to shove and work needs to get done, security is the first thing that gets thrown out the window. Governments are comfortable with privacy: They know the importance of not having their military secrets in the hands of their enemies. They know they need it, and know that they are going to have to pay dearly for it. And they accept the burden that privacy puts on them. Governments often get the details wrong, but they grok the general idea. Almost no one realizes exactly how important privacy is in his or her life. The Supreme Court has insinuated that it is a right guaranteed by the Constitution. Democracy is built upon the notion of privacy; you can't have a secret ballot without it. Businesses can't function without some notion of privacy; multiple individuals within a company need to know proprietary information that people outside the company don't. People want to be secure in their conversations, their papers, and their homes. In the United States, individuals don't own the data about themselves. Customer lists belong to the businesses that collect them. Personal databases belong to the database owner. Only in rare instances do individuals have any rights or protections about the data that are collected about them. Most countries have laws protecting individual privacy. The EU, for example, has the Data Protection Act of 1998. Organizations that collect personal data must register with the government, and take precautions against misuse of that data. They are also prohibited from the collection, use, and dissemination of personal information without the consent of the person. Organizations also have the duty to tell individuals about the reason for the information collection, to provide access and correct inaccurate information, and to keep that information secure from access by unauthorized parties. Individuals have a right to see their own personal data that has been collected and have inaccuracies corrected. Individuals also have the right to know what their data is being collected for, and to be sure that their data isn't being sold for other purposes. They also have the right to "opt out" of any data collection that doesn't appeal to them. Data collectors have the responsibility to protect individual data to a reasonably high degree, and to not share the data with anyone who does not adhere to these rules. That last clause has caused a contretemps between the EU and the United States, since the United States does not enforce any controls on personal data and allows companies to buy and sell it at will. At this writing, the United States and the EU have tentatively agreed on safe-harbor provisions for American companies that meet "adequate" levels of privacy by July 2001. Some members of Congress have tried several times to pass pro-privacy legislation (although nothing as encompassing as what the EU does), but have been blocked through industry pressure. The lobbying group NetCoalition.com, which includes AOL, Amazon.com, Yahoo!, eBay, and DoubleClick, believes in self-regulation, which is the equivalent of no privacy protection. Unfortunately, much of the industry feels that privacy is bad for business; invading personal privacy is sometimes the only way some companies see to make money. On to business privacy. Businesses don't generally need long-term privacy. (Trade secrets—the formula for Coke, for example—are the exceptions.) Customer databases might need to remain confidential for a few years. Product development data, only a few years—and for computer-related businesses, a lot less than that. Information about general financial health, business negotiations, and tactical maneuvers: weeks to months. Marketing and product plans, strategies, long-range negotiations: months to years. Detailed financial information might need to be secure for a few years, but probably not more. Even corporate five-year plans are obsolete after nine months. We live in a world where information diffuses rapidly. Last week's business secrets have been supplanted by this week's new business secrets. And this week's business secrets are next week's Wall Street Journal headlines. Governments need short-term privacy as well. Often the interests of one country run counter to the interests of another country, and governments need to keep certain pieces of information secret from that other country. Unfortunately, countries are a lot bigger than companies. It's impossible to tell everyone in the United States a secret without it leaking to the government of China. Therefore, if the United States wants to keep a secret from the Chinese, it has to keep it a secret from almost all Americans as well. These secrets are usually military in nature: strategy and tactics, weapons capabilities, designs and procurements, troop strengths and movements, research and development. Military secrets often broaden into state secrets: negotiating positions on treaties and the like. And they often overlap into corporate secrets: military contracts, bargaining positions, import and export dealings, and so forth. The exceptions to this short-term privacy need are embarrassments: personal, political, or business. Union Carbide would have been happier if information about Bhopal stayed secret for longer than it did. Governments don't want their political embarrassments leaking into the press. (Think Watergate. Think Iran-Contra. Think almost any political scandal uncovered by the media.) People don't want their personal pasts made public. (Think Bill Clinton. Think Bob Livingston, the Congressman and Speaker of the House nominee who resigned in 1999, after a 20-year-old affair was made public. Think Arthur Ashe, whose AIDS condition was discovered by the press.) In about two decades, we're going to have elections where candidates are going to have to try to explain e-mail that they wrote when they were adolescents. Security Needs The few instances of very long privacy requirements I know of are government related. U.S. census data—the raw data, not the compilations—must remain secret for 72 years. The CIA mandates that the identities of spies remain secret until the spy is dead and all the spy's children are dead. Canadian census data remains secret forever. ### MULTILEVEL SECURITY Militaries have a lot of information that needs to be kept secret, but some pieces of information are more secret than others. The locations of Navy ships might be of moderate interest to the enemy, but the launch codes for the missiles on those ships are much more important. The number of bedrolls in the supply chain is of marginal interest; the number of rifles is of greater interest. To deal with this kind of thing, militaries have invented multiple levels of security classifications. In the U.S. military, data is either Unclassified, Confidential, Secret, or Top Secret. Rules govern what kind of data falls into what classification, and different classifications have different rules for storage, dissemination, and so forth. For example, different strength safes are required for different classifications of data. Top Secret data might only be stored in certain guarded, windowless, rooms without photocopiers, and might need to be signed out. People working with this data need security clearances commensurate with the highest classification of information they are working with. Someone with a Secret clearance, for example, can see information that is Unclassified, Confidential, and Secret. Someone with a Confidential clearance can only see Unclassified and Confidential data. (Of course, clearance is not a guarantee of trustworthiness. The CIA's head Russian counterintelligence officer, Aldrich Ames, had a Top Secret security clearance; he also was a Russian spy.) Data at the Top Secret level or above is sometimes divided by topic, or compartment. The designation "TS/SCI," for "Top Secret/Special Compartmented Intelligence," indicates these documents. Each compartment has a codeword. TALENT and KEYHOLE, for example, are the keywords associated with the KH-11 spy satellites. SILVER, RUFF, TEAPOT, UMBRA, and ZARF are others. (UMBRA applies to communications intelligence, and RUFF applies to imagery intelligence.) Compartments are topical access barriers; someone who has a Top Secret clearance with an additional KEYHOLE clearance (sometimes called a "ticket") is not authorized to see Top Secret COBRA data. These compartments are a formal codification of the notion of "need to know." Just because someone has a certain level of clearance doesn't mean he automatically gets to see every piece of data at that clearance level. He only gets to see the data that he needs to know to do his job. And there are other designations that modify classifications: NOFORN is "No Foreign Nationals," WNINTEL is "Warning Notice, Intelligence Sources and Methods," LIMDIS is "Limited Dissemination." Other countries have similar rules. The United Kingdom has one additional classification level, Restricted, which falls between Unclassified and Confidential. The United States has something similar called FOUO—For Official Use Only—which means "Unclassified, but don't tell anyone anyway." Two points are salient here. One, this kind of thing is much easier to implement on paper than on computer. Chapter 8 talks about some of the multilevel security systems that have been built and used, but none of them have ever worked on a large scale. And two, this kind of thing is largely irrelevant outside a military setting. Corporate secrets just don't work this way; neither do individuals' secrets. Security in the real world doesn't fit into little hierarchical boxes. #### ANONYMITY Do we need anonymity? Is it a good thing? The whole concept of anonymity on the Internet has been hotly debated, with people weighing in on both sides of the issue. Anyone who works on the receiving end of a crisis telephone line—suicide, rape, whatever—knows the power of anonymity. Thousands of people on the Internet discuss their personal lives in newsgroups for abuse survivors, AIDS sufferers, and so on, that are only willing to do so through anonymous remailers. This is social anonymity, and it is vital for the health of the world, because it allows people to talk about things they are unwilling to sign their name to. For example, some people posting to alt.religion.scientology do so anonymously, and would not do so otherwise. Political anonymity is important, too. There is not, and should not be, any requirement that all political speech be signed. Just as someone can do a mass political mailing with no return address, they can do the same over the Internet. This matters more in certain parts of the world: In 1999, online anonymity allowed Kosovars, Serbs, and others caught up in the Balkan war to send news about the conflict to the rest of the world without taking the life-threatening risk of revealing their identities. On the other hand, people are using the anonymity of the Internet to send threatening e-mail, publish hate speech and other obloquies, disperse computer viruses and worms, and otherwise roil the good citizens of cyberspace. There are two different types of anonymity. The first is complete anonymity: a letter without a return address, a message in a bottle, a phone call in a world without Caller ID or phone tracing. The person initiating the communication is completely anonymous: No one can figure out who it is, and more importantly, if the person initiates another communication, the recipient doesn't know it came from the same person. The second type of anonymity is more properly called *pseudonymity*. Think of a Swiss bank account (although the Swiss actually stopped doing this in 1990), a Post Office box rented with cash under an assumed name (although this is no longer possible in the United States without a fake ID), an Alcoholics Anonymous meeting where you're just known as "Bob." It's anonymous in that no one knows who you are, but it is possible to link different communications from the same pseudonym. This is exactly what a Swiss bank needs: It doesn't care who you are, only that you're the same person that deposited the money last week. A merchant doesn't need to know your name, but it does need to know that you legitimately bought the merchandise you are now trying to return. Both types of anonymity are hard in cyberspace, because so much of the infrastructure is identifying. The new Intel Pentium III—class microprocessors have unique serial numbers that can be tracked, as do Ethernet network cards. Microsoft Office documents automatically contain information identifying the author. Cookies track people on the Web; even anonymous e-mail addresses can theoretically be linked back to the real person by tracking IP addresses. And many flaws have been found in the various products that promise anonymous browsing. Superficial anonymity is easy, but true anonymity is probably not possible on today's Internet. ## Commercial Anonymity The notion of pseudonymity brings us nicely to anonymity in financial transactions. What about it? A small group is a vocal proponent of financial anonymity. It's no one's business—not the government's, not the merchants', not the marketers'—what people buy, whether it be X-rated videos or surprise birthday presents. Unfortunately, there is also a large group of nonvocal proponents of financial anonymity: drug dealers and other maleficent elements. Can these two sides reconcile? Obviously they can, because cash exists. The real question is whether we will ever get an electronic version of cash. I don't believe we will, except for low-value transactions. Anonymity is more expensive because extra risks are associated with an anonymous system. (Government regulations also affect things.) Banks aren't stupid; they prefer a less risky system. And choosing an anonymous system is more expensive than a system based on accounts and relationships. Banks could build the extra costs into the system, but customers aren't willing to pay for it. If you are a merchant, try this experiment. Put a sign up in your store with the words "5 percent discount if you give us your name and address and let us track your buying habits." See how many customers prefer anonymity. People talk as if they don't want megadatabases tracking their every spending move, but they are willing to get a frequent-flyer affinity card and give all that data away for one thousandth of a free flight to Hawaii. If McDonald's offered three free Big Macs for a DNA sample, there would be lines around the block. On the other hand, put up a sign saying "5 percent discount if you give us the name and address of your child's daycare center" and you're likely to get a different reaction. There are some things most people want to keep private, and there are people who want to keep most things private. There will always be the Swiss-bank style anonymous payment systems for the rich, who are willing to pay a premium for their privacy. But the average consumer isn't one of those people. Average consumers will have personal exceptions, but in general they don't care Security Needs about anonymity. Banks have no reason to give it to them, especially while the government is pressuring them not to. ## Medical Anonymity And then there are medical databases. On the one hand, medical data are only useful if shared. Doctors need to know the medical history of their patients, and aggregate medical data is useful for all sorts of research. On the other hand, medical information is about as personal as it gets: genetic predisposition to disease, abortions and reproductive health, emotional health and psychiatric care, drug abuse, sexual behaviors, sexually transmitted diseases, HIV status, physical abuse. People have a right to keep their medical information private. People have been harassed, threatened, and fired after personal medical information was made public. And it's not hard to get this information. Nicole Brown Simpson's medical records were leaked to the press within a week after her 1994 murder. In 1995, the *Sunday Times* of London reported that the going price for anyone's medical record in England was £200. And these cases are from wealthy countries; just imagine what kinds of abuses are possible in countries like India or Mexico, where a \$10 bill can tempt even the most virtuous civil servant. Computerized patient data is bad for privacy. But it's good for just about everything else, so it's inevitable. HIPAA (the Health Insurance Portability and Accessibility Act) now has standards for computerized medical records. It makes it easier to provide information when and where it is needed, for a population that is less likely to have a family doctor and more likely to move around the country, visiting different doctors and hospitals when necessary. Specialists can easily call up vital data. Insurance companies like it because it allows more automation, greater standardization, and cheaper processing: If all the data are electronic, then it will be cheaper to process claims. And researchers like it because it allows them to make better use of the available data: For the first time they can look at everything, in standard form. This is a big deal, probably as important as the financial and credit databases mentioned previously. We as a society are going to have to balance the need for access (which is much more evident for medical information than financial information) with the need for privacy. Computerization is coming to the medical profession, like it or not. We need to make sure it's done correctly. #### PRIVACY AND THE GOVERNMENT The government, and the FBI in particular, likes to paint privacy (and the systems that achieve it) as a flagitious tool of the Four Horsemen of the Information Apocalypse: terrorists, drug dealers, money launderers, and child pornographers. In 1994, the FBI pushed the Digital Telephony Bill through Congress, which tried to force telephone companies to install equipment in their switches to make it easier to wiretap people. In the aftermath of the World Trade Center bombing, they pushed the Omnibus Counterterrorism Bill, which gave them the power to do roving wiretaps and the President the power to unilaterally and secretly classify political groups as terrorist organizations. Thankfully, it didn't pass. After TWA Flight 800 fell out of the sky in 1996 because of a fuel-tank explosion, the FBI played on rumors that it was a missile attack and passed another series of measures that further eroded privacy. They're continuing to lobby for giving the government access to all cryptographic keys that protect privacy, or weakening the security so that it doesn't matter. For the past few decades, computer privacy in the United States has been limited by what are called *export laws*. Export laws limit what kind of encryption U.S. companies can export. Since most software products are global, this effectively limited the strength of the cryptography in mass products like Internet browsers and operating systems. Since 1993, the U.S. government has been advocating something called key escrow, which I discuss in detail in Chapter 16. This is the system that gives the police access to your encryption keys. The debate is ongoing. The FBI has been pushing for stronger antiprivacy measures: the right to eavesdrop on broad swaths of the telephone network, the right to install listening devices on people's computers without warrants wherever possible. At the time of writing (early 2000), we have new export rules for mass-market software, a variety of encryption liberalization bills are in Congress, and several court cases about export controls are working their way to the Supreme Court. Changes happen all the time; anything I say here could be obsolete by the time this book is published. Security Needs Also interesting (and timeless) are the philosophical issues. First, is the government correct when it implies that the social ills of privacy outweigh the social goods? I argued in the previous section that the benefits of anonymity outweigh the problems. It is the same with privacy. It has many positive uses, and the positive uses are much more common than the negative ones. Second, can a government take a technology that clearly does an enormous amount of social good and, because they perceive that it hinders law enforcement in some way, limit its use? The FBI shibboleth is that encryption is a great hindrance to criminal investigations, and that they are only asking for the same eavesdropping capabilities they had ten years ago. However, they offer no evidence, and the historic record convincingly shows that wiretaps are not cost-effective crimefighting techniques. Widespread cryptography may be a step back for law enforcement's desires, but it may not be a step back in convicting criminals. I don't know the answers. A balance exists between privacy and safety. Laws about search and seizure and due process hinder law enforcement, and probably result in some criminals going free. On the other hand, they protect citizens against abuse by the police. We as a society need to decide what particular balance is right for us, and then create laws that enforce that balance. Warrants are a good example of this balance; they give police the right to invade privacy, but add some judicial oversight. I don't necessarily object to invasions of privacy in order to aid law enforcement, but I vociferously object to the FBI trying to ram them through without public debate or even public awareness. In any case, the future does not look good. Privacy is the first thing jettisoned in a crisis, and already the FBI is trying to manufacture crises in an attempt to seize more powers to invade privacy. A war, a terrorist attack, a police action . . . would cause a sea change in the debate. And even now, in an environment that is most conducive to a reasoned debate on privacy, we're losing more and more of our privacy. #### AUTHENTICATION Privacy and anonymity might be important for our social and business well-being, but authentication is essential for survival. Authentication is about the continuity of relationships, knowing who to trust and who not to trust, making sense of a complex world. Even nonhumans need authentication: smells, sounds, touch. Arguably, life itself is an authenticating molecular pit of enzymes, antibodies, and so on. People authenticate themselves zillions of times a day. When you log on to a computer system, you authenticate yourself to the computer. In 1997, the Social Security Administration tried to put people's data up on the Web; they shut down after complaints that Social Security number and mother's maiden name weren't good enough authentication means, that people would be able to see other people's data. The computer also needs to authenticate itself to you; otherwise, how to do you know it's your computer and not some impostor's? Consider the average man on the street going to buy a bratwurst. He examines storefront after storefront, looking for one that sells bratwurst. Or maybe he already knows his favorite bratwurst store, and just goes there. In any case, when he gets to the store he authenticates that it is the correct store. The authentication is sensory: He sees bratwurst on the menu, he smells it in the air, the store looks like the store did the last time he was there. Our man talks to the deli man and asks for a bratwurst. To some degree, both authenticate each other. The deli man wants to know if the customer is likely to pay. If the customer is dressed in rags, the deli man might ask him to leave (or at least to pay beforehand). If the customer is wearing a balaclava and brandishing an AK-47, the deli man might simply run away. The customer, too, is authenticating the deli man. Is he a real deli man? Will he deliver me my bratwurst, or will he just give me a pile of sawdust on my bun? What about the restaurant? There's probably some kind of certificate of cleanliness, signed by the local health inspector, on the wall somewhere if the customer cares to check. More often, the customer trusts his instincts. We've all walked out of restaurants because we didn't like the "feel" of the place. The deli man hands over the bratwurst, and the customer hands over a \$5 bill. More authentication. Is this bill authentic? Is this bratwurst-looking thing food? We're so good at visual (and olfactory) authentication that we don't think about it, but we do it all the time. The customer gets his change, checks to make sure it is legal tender, and puts it in his pocket. If the customer paid using a credit card, there would be lot of behind-the-scenes authentication. The deli man would swipe the card through a VeriFone reader, which would dial into a central server and make sure the account was valid and had enough credit for the purchase. The deli man would be expected to examine the card to make sure it isn't a forgery, and check the signature against the one on the back of the card. (Most merchants don't bother, especially for low-value transactions.) If the customer paid by check, there would be another authentication dance. The deli man would look at the check, and possibly ask the customer for some identification. Then he might write the customer's driver's license number and phone number on the back of the check, or maybe the customer's credit card number. None of this will actually help the deli man collect on a bad check, but it does help him track the customer down in the event of a problem. Attacking authentication can be very profitable. In 1988, Thompson Sanders was convicted of defrauding the Chicago Board of Trade. He synthesized a nonexistent trader, complete with wig, beard, and fake credentials. This fake trader would place large risky orders, then claim those that were profitable and walk away from those that were not. The brokers on the other side of the losing transactions, unable to prove who they made the trade with, would be responsible for the losses. Back to the deli. Another customer walks in. She and the deli man are old friends. They recognize each other—authenticating each other by face. This is a robust authentication system; people recognize each other even though she has a new hairstyle and he is wearing a new toupee and glasses. Superheroes realize this, and wear masks to hide their secret identity. That works better in comic books than in real life, because face-to-face authentication isn't only face recognition (otherwise the blind would never recognize anyone). People remember each other's voice, build, mannerisms, and so forth. If the deli man called his friend on the phone, they could authenticate each other without any visual cues at all. Commissioner Gordon ought to figure out that Bruce Wayne is really Batman, simply because they talk on the phone so often. In any case, our bratwurst-filled customer finishes eating. He says goodbye to the deli man, sure in the knowledge that he is saying goodbye to the same deli man who served him his bratwurst. He leaves through the same door that he came in by, and goes home. Easy enough, because everyone involved was there . . . in the deli. Plato (and Hume) distrusted writing because you couldn't know what was true if the person wasn't right there in front of you. What would he say about the World Wide Web: no handwriting, no voice, no face . . . nothing but bits. The same customer who bought the bratwurst is now surfing the Net, and he wants to buy something a little less perishable: a painting of a bratwurst, for example. He fires up his trusty search engine and finds a few Web sites that sell bratwurst paintings. They all take credit cards over the Internet, or let him mail a check in. They all promise delivery in three to four days. Now what? How does the poor customer know whether to trust them? It takes some doing to put up a storefront; on the Web, anyone can do it in a few hours. Which of these merchants are honest, and which are scams? The URL might be that of a trusted name in the bratwurstpainting business, but who's to say that the URL is owned by that same trusted name? Northwest Airlines has a Web site where you can purchase tickets: www.nwa.com. Until recently, a travel agent had the Web site www.northwest-airlines.com. How many people bought from the latter, thinking they were buying from the former? (Many companies do not own their namesake domain name.) Some companies embed their competitors' names in their Web site (usually hidden) in an effort to trick search engines to point to them instead of their competitors. Internic.net, which is where you go to register domain names, is not the same as Internic.com. The latter started out as a spoof, morphed into Internic Software, and now registers domain names as well. They probably get a considerable business from the confused. And there's an even more sinister thought: Who's to say that some illicit hacker hasn't convinced the browser to display one URL while pointing to another? The customer finds a Web site that looks reasonable and chooses a bratwurst painting. He then has to pay the merchant. If he's buying anything of value, we are going to need some serious authentication here. (If he's spending 25 cents for a virtual newspaper, it's a little easier to let this slide.) Is this digital cash valid? Is this credit card valid, and is the customer authorized to use it? Is the customer authorized to write a digital check? Some face-to-face merchants ask to see a driver's license before Security Needs accepting a check; what can a digital merchant examine before accepting a digital check? This is the most important security problem to solve: authentication across digital networks. And there are going to be as many different solutions as there are different requirements. Some solutions are going to have to be robust, protecting values in the millions of dollars. Some won't have to be strong: authentication for a merchant's discount card, for example. Some solutions are going to be anonymous—cash, or a card that lets you in to a particular area of the Net without necessarily revealing your name—while others will need strong audit trails. Most will have to be international: a Net-based passport, commerce systems used for international commerce (which is all of them, these days), digital signatures on international contracts and agreements. Often computer authentication is invisible to the user. When you use your cell phone (or your pay-TV system), it authenticates itself to the network so the network knows who to bill. Military aircraft have IFF (identification friend or foe) systems to authenticate themselves to allied aircraft and antiaircraft batteries. Burglar alarms include authentication, to detect someone splicing a rogue alarm (that will never go off) into the circuit. Tachographs, used in trucks throughout Europe to enforce driving rules, such as mandatory rest periods, use authentication techniques to prevent fraud. Prepaid electricity meters in the United Kingdom are another example. When thinking about authentication, keep in mind these two different types. They might feel the same, but the techniques used are very different. The first one is session authentication: a conversation, either face to face, over the telephone, or via an IRC (Internet Relay Chat) link. Sessions can also be a single shopping expedition at an online store. What is authenticated here is the continuity of the particular conversation: Is the person who said this the same person who said the previous thing? (That's easy to do on the phone or face to face—the person sounds or looks the same, so it's probably the same person. On the Net, it's a lot harder.) The other is transaction authentication: a credit card purchase, a piece of currency. The authentication here is whether or not the transaction is valid: whether the parties should accept the transaction or call the cops. The issues surrounding this kind of authentication are the same whether the transaction is done over the Net, over the telephone, or face to face. Think of a merchant checking a \$100 bill to make sure it's not counterfeit, or comparing the signature on a credit card with the signature on the sales slip. #### INTEGRITY Sometimes when we think of authentication, we really mean integrity. The two concepts are distinct but sometimes confused. Authentication has to do with the origin of the data: who signed the license to practice medicine, who issued the currency, who authorized this purchase order for 200 pounds of fertilizer and five gallons of diesel fuel? Integrity has to do with the validity of data. Are these the correct payroll numbers? Has this environmental test data been tampered with since I last looked at it? Integrity isn't concerned with the origin of the data—who created it, when, or how—but whether it has been modified since its creation. Integrity is not the same as accuracy. Accuracy has to do with a datum's correspondence to the flesh-and-blood world; integrity is about a datum's relation to itself over time. They are often closely related. In any society where computerized data are going to be used to make decisions, the integrity of the data is important. Sometimes it is important on an aggregate scale: if that faulty statistic about children below the poverty line is accepted as fact, it could change the amount of federal aid spent. Someone who fiddles with the closing prices for a handful of NASDAQ stocks could make a killing on the resultant confusion. Sometimes it is important to an individual: You can really mess up someone's day tampering with his DMV records and marking his license as suspended. (This was accidentally done in 1985 in Anchorage, Alaska, to 400 people, at least one of whom had to spend the night in jail. Think of the fun someone could have doing it on purpose.) There have been several integrity incidents regarding stocks. In 1997, a company called Swisher that makes toilet bowl deodorizers got a big boost to its stock prices because the news services kept mixing up its stock symbol with that of another company called Swisher, which makes cigars. Swisher(1) was a much smaller company than Swisher(2), so when you plugged in the mistaken earnings figures, it looked like an incredibly undervalued stock. Some guys on the Mot- Security Needs ley Fool Web site figured out what had happened and sold Swisher(1)'s stock short, figuring it would come back down when investors realized their mistake. In 1999, an employee of PairGain Technologies posted fake takeover announcements designed to look like they came from the Bloomberg news service, running the stock up 30 percent before the hoax was exposed. These attacks are not about authentication—it doesn't matter who collected the census data, who compiled the closing stock prices, or who input the motor vehicle records—they're about integrity. There are many other databases where integrity is important: telephone books, medical records, financial records, and so on. If there's a mystery writer in the audience, I always thought that a cool way to murder someone would be to modify the drug dosage database in a hospital. If the physician isn't paying close enough attention—he's tired, the drug is an obscure one, some MacGuffin is distracting himhe might just prescribe what the computer tells him to. This might be farfetched today—there's still a lot of reliance on hard-copy documentation like the Physician's Desk Reference and AHFS Drug Information—but it won't be soon. Millions of people are getting medical information online. For example, drugemporium.com queries another site, drkoop.com, to search for any harmful drug interactions among the products in your order (which can include prescription drugs). Users are admonished not to rely on this information alone, but most of them probably will anyway. Someone playing with the integrity of that data can cause a lot of harm. And even if no malice is involved, any online system that deals with prescriptions and treatments had better implement integrity checking against random errors: No one wants a misplaced byte to result in an accidental hospital death, neither the patient nor the software company who is going to have to deal with the lawsuits. In the physical world, people use the physical instantiation of an object as proof of integrity. We trust the phone book, the Physician's Desk Reference, and the U.S. Statistical Abstracts because they are bound books that look real. If they are fake, someone is spending a lot of money making them look real. If you pull a Dickens novel off the shelf and start reading it, you don't think twice about whether it is real or not. The same with a clipping from Business Week; it's just a piece of paper, but it looks and feels like a page from the magazine. If you get a photocopy of the clipping, then it just looks like a page from the magazine. If someone retypes the article (or downloads it from LEXIS-NEXIS) and e-mails it to you . . . then who knows. On August 1, 1997, I received an e-mail from a friend; in it was a copy of Kurt Vonnegut's 1997 MIT commencement address. At least, I assumed it was Vonnegut's 1997 MIT commencement address. My friend mailed it to me in good faith. But it wasn't Kurt Vonnegut's 1997 MIT commencement address. Vonnegut didn't deliver the 1997 commencement address at MIT. He never wrote the speech, or delivered it anywhere. The words were written by Mary Schmich, and published in her June 1, 1997, Chicago Tribune column. Contrast that with another piece of alleged Vonnegut writing I received, about 15 years previous. This was before the World Wide Web, before I even had an e-mail address (but not before the Internet). This was an essay entitled "A Dream of the Future (Not Excluding Lobsters)"; a friend sent a photocopy in the mail. The copy was clearly from a publication. Yes, it could have been faked, but it would have been a lot of work. This was before the era of desktop publishing, and making something look like it was photocopied out of Esquire magazine was difficult and expensive. Today it's hard to tell the difference between the real thing and a canard. I've been e-mailed articles from magazines and newspapers many times. What kind of assurance do I have that those articles are really from the newspapers and magazines they are claimed to be from? How do I know that they haven't been subtly modified, a word here and a sentence there? What if I make this book available online, and some hacker comes in and changes my words? Maybe you're reading this book online; did you ever stop to think that these might not be my actual words, that you're trusting the server you downloaded the book from? Is there a mechanism that you can use to verify that these are my words? If enough years go by, more people will have read the altered version of the book than my original words. Will anyone ever notice? How long before the modified version becomes the "real" version? When will Vonnegut's denial be forgotten and his commencement address become history? The temptation to falsify, or modify, data remains. A rune-covered stone discovered in Minnesota supposedly described a visit by the Vikings in 1362; never mind that it contained a word only found in modern Swedish. Paul Schliemann (Heinrich Schliemann's grandson) claimed to have discovered the secret of Atlantis in the ancient Mayan Troano Codex, which he read in the British Museum. Never mind that no one could read Mayan, and that the Codex was stored in Madrid. Bismarck's rewrite of the 1870 Ems telegram effectively started the Franco-Prussian War. In 1996, when David Selbourne tried to pass off his translation of a thirteenth-century Italian traveler's visit to China (beating Marco Polo by three years); he used the "owner of the manuscript allowed him to translate it only if he swore himself to secrecy" trick to avoid having to produce a suitable forgery. The problem is that the digital world makes this kind of thing easier, because it is so easy to produce a forgery and so hard to verify the accuracy of anything. In May 1997, a 13-year-old Brooklynite won a national spelling bee. When the New York Post published the Associated Press photo of her jumping for joy, it erased the name of her sponsoring newspaper, the New York Daily News, from a sign around her neck. Video, too: When CBS covered the 2000 New Year celebration, they digitally superimposed their own logo over the 30-by-40-foot NBC logo in Times Square. And fake essays and speeches, like the Vonnegut speech, are posted on the Internet all the time. Images can have powerful effects on people. They can change minds and move foreign policy. Desert Storm pictures of trapped Iraqis being shot up by Coalition airpower played a large part in the quick cease-fire: Americans didn't like seeing the lopsided carnage. And remember Somalia? All it took was a 30-second video clip of a dead Marine being dragged through the streets of Mogadishu to undermine the American will to fight. Information is power. And next time, the video clip could be a fake. It sounds spooky, but unless we pay attention to this problem we will lose the ability to tell the real thing from a fake. Throughout human history, we've used context to verify integrity; the electronic world has no context. In the movie *The Sting*, Newman and Redford hired a cast of dozens and built an entire fake horseracing-betting parlor in order to con one person. A more recent movie, *The Spanish Prisoner*, had a similar big con. Cons this involved were popular around the time of the Depression; for all I know it's still done today. The mark is taken because he can't imagine that what he's seeing—the rooms, the people, the noise, the action—is really only a performance enacted solely for his benefit. On the Net, this is easy to do. In a world without physical cues, people need some new way to verify the integrity of what they see. #### AUDIT Double-entry bookkeeping was codified by 1497 by Luca Pacioli of Borgo San Sepolcro, although the concept is as much as 200 years older. The basic idea is that every transaction will affect two or more accounts. One account is debited by an amount exactly equal to what the other is credited. Thus, all transactions are always transfers between two accounts, and since they always appear with a plus sign in one account and a minus sign in the other, the total over all accounts will always be zero. This system had two main purposes. The two books would be kept by two different clerks, reducing the possibility of fraud. But more importantly, the two books would be routinely balanced against each other (businesses would balance their books every month; banks, every day). This balancing process was an audit: If one clerk tried to commit fraud—or simply made a mistake—it would be caught in the balancing process, because someone other than the clerk would be checking the work. Additionally, there would be outside audits, where accountants would come in and check the books over again . . . just to make sure. Audit is vital wherever security is taken seriously. Double-entry bookkeeping is just the beginning; banks have complex and comprehensive audit requirements. So do prisons, nuclear missile silos, and grocery stores. A prison might keep a record of everyone who goes in and out the doors, and balance the record regularly to make sure that no one unexpectedly left (or unexpectedly stayed). A missile silo might go even further and audit every box and package that enters and leaves, comparing shipping and receiving records with another record of what was expected. A grocery store keeps a register tape of all transactions that happen at the register, and compares how much money the register thinks is in the drawer with what is actually in the drawer. These are not preventive security measures (although they may dissuade attacks); audit is designed to aid forensics. Audit is there so that you can detect a successful attack, figure out what happened after the fact, and then prove it in court. A system's particular needs for audit depend on the application and its value. You don't need much of an audit trail for a stored-value card system for photocopy machines at a university; you need a much stronger audit trail if the cards are going to be used to make high-value purchases that can be converted back to cash. Auditing can be difficult on computers. Register tapes make good audit records because the clerk cannot change them: Transactions are printed sequentially on a single sheet of paper, and it is impossible to add or delete a transaction without raising some suspicion. (Well, there are some attacks: blocking the writing, simulating running out of ink, disabling the writing for a single transaction, forging an entire tape, and so forth.) On the other hand, computer files can easily be erased or modified; this makes the job of verifying audit records more difficult. And most system designers don't think about audit when building their systems. Recall the built-in audit property of double-entry bookkeeping. That auditability fails when both books are stored on the same computer system, with the same person having access to both. But this is exactly how all computer bookkeeping programs work. #### ELECTRONIC CURRENCY Back in the old days (1995 or so), everyone thought that we would have to develop new forms of money to deal with electronic commerce. Many companies died, trying to redefine money. Some companies tried to create an electronic equivalent of cash; others tried to create electronic equivalents of checks and credit cards. One of the last vestiges of this, the joint Visa/MasterCard SET protocol, is designed to use existing credit cards together with an Internet-specific system to make credit cards safe for e-commerce. It turns out that it doesn't matter. Credit cards are fine for the Internet, and most everyone uses them with alacrity to buy books, clothing, pay-per-porn, and everything else. Still, security breaches like the series of credit card number thefts in 2000 make you wonder. Is there ever going to be an Internet-specific form of payment? This is more of a regulatory question than a security question. The security needs for electronic commerce can be cobbled together from the previous sections: authentication, privacy, integrity, nonrepudiation, audit. The requirements are pretty simple: We need the ability to transfer monetary value over computer networks. Looking closer, there are several ways to achieve this. We can take any of the existing commerce metaphors—cash, checks, debit cards, credit cards, letters of credit—and move them to cyberspace. Different metaphors have different rules and requirements. Some requirements depend on who has what liability. Merchants and credit card companies hold most of the liabilities for stolen credit cards and fraudulent credit card transactions, so electronic versions of those systems are generally designed to make their lives easier, and not the consumers'. Different physical implementations also have different requirements. Is this an online system or an offline system? Things are simpler if you can assume an online connection with a bank (such as ATMs require). If you're building a commerce system for use in parts of the world where telephone lines are scarce (like parts of Africa), you can't make that assumption. Does the system have to work in a software environment, or can we assume a secure-hardware token like a smart card? And does this system have to be anonymous, like cash, or include identities, like credit cards? Finally, what government regulations does this system have to meet? This depends not only on the metaphor chosen, but also the regulations of the particular government or governments who have jurisdiction over the system. We're already seeing some of this. We're not seeing digital cash, but we're seeing alternative "points" systems that are the same thing as currency. Flooz.com created a specialized currency for gift giving. Flooz can be given away as gift certificates, which makes them usable as money. Beenz.com does something similar; beenz are not real currency, but they can be used and traded as such. Other companies are following suit. I expect this to become a big deal, and potentially dangerous, because these pseudocurrencies don't have the same regulatory rules as real money. #### PROACTIVE SOLUTIONS Traditionally, fraud prevention has been reactive. Criminals find a flaw in a commerce system and exploit it. They keep going while the system's designers figure out how to fix the flaw, or at least minimize the risk. The criminals learn that their attack doesn't work, and then go on to some other attack. And the process continues. You can see this in credit cards. Originally, card verification was offline. Merchants were given books of bad credit card numbers every week, and they had to manually check the number against the book. Now, card verification is done online, in real time. People were stealing new cards out of mailboxes, so the credit card companies started requiring you to call in to activate your card. Now, the card and the activation notice are mailed from different points. Companies also have artificial intelligence programs checking for irregular spending patterns. ("Good morning, sir, sorry to bother you. You've been a good customer for years. We'd like to confirm that you suddenly moved to Hong Kong and spent your entire credit limit on Krugerands.") When ATMs were first introduced by Citicorp in 1971, you would put your card into a slot and type in your PIN. The machine would verify your PIN, spit the card back out at you, and then you could finish your transaction. Enterprising New York criminals would dress up in suits and wait near these machines. After a customer's PIN was verified, she would be approached by a suited criminal and be told that this machine was broken, or being tested, or just out of money, and wouldn't she please use the machine over there. People in suits can be trusted, after all. After the customer left, the suit would finish the first transaction and pocket the cash. The work-around was to hold the card until the end of the transaction, but that required rebuilding the hardware. The banks needed a solution fast, and they figured out a fix that could be quickly installed at the ATMs: They had the nearby machines communicate with each other. As they installed the fix throughout the branches, they could watch the criminals migrate across the city looking for machines where the attack still worked. They then retrofitted the ATMs to hold the card until the end of the transaction. The long-term solution was to modify the back-end network to make sure that only one transaction per card is active at any time. This has been done, so now it doesn't matter if the card is held by the machine anymore. Now many ATMs have you swipe your card instead of inserting it, but back then there was considerable fraud while the problem was being fixed. This notion of fixing a security flaw after it becomes a problem won't work on the Internet. Attacks can be automated, and they can propagate to unskilled attackers quickly and easily. A similar attack on whatever turns out to be the Internet equivalent of an ATM could demolish the banking system. It's not enough to react to fraud after it's been demonstrated to work; we have to be proactive and deal with fraud before it happens.