Math 306, Spring 2012 Homework 5 Solutions

- (1) (a) (3 pts) Find a linearly dependent set of three vectors in \mathbb{R}^3 , but such that any set of two of them is linearly independent.
 - (b) (5 pts) Let V be a vector space over \mathbb{C} . Suppose that $B = \{v_1, v_2, v_3\}$ is a linearly independent subset of V. Prove that the set $B' = \{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ is a linearly independent subset of V.

Solution:

- (a) Take, for example, $\{(1,0,0), (0,1,0), (1,1,0)\}$
- (b) Suppose that there are $c_1, c_2, c_2 \in \mathbb{C}$ such that $c_1(v_1 + v_2) + c_2(v_2 + v_3) + c_3(v_1 + v_3) = 0$. Then $(c_1 + c_3)v_1 + (c_1 + c_2)v_2 + (c_2 + c_3)v_3 = 0$. Since $B = \{v_1, v_2, v_3\}$ is linearly independent, we conclude that $c_1 + c_3 = 0$, $c_1 + c_2 = 0$ and $c_2 + c_3 = 0$. Then we can write

$$\left(\begin{array}{rrr}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right)\left(\begin{array}{r}c_1\\c_2\\c_3\end{array}\right) = \left(\begin{array}{r}0\\0\\0\end{array}\right).$$

Since the determinant of this 3×3 matrix is 2, it is invertible, so

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

as required.

(2) (5 pts/part) Let K be a field and let K^n be the vector space of n-tuples over K. For all $j \in \{1, ..., n\}$, let

 $e_i = (0, \ldots, 0, 1, 0, \ldots, 0, \ldots, 0),$

where the 1 occurs in the *j*-th position. Let $f_j = e_1 + \cdots + e_j$ for all $j \in \{1, \ldots, n\}$.

- (a) Prove that $B_1 = \{e_1, e_2, \dots, e_n\}$ is a basis for K^n .
- (b) Prove that $B_2 = \{f_1, f_2, \dots, f_n\}$ is a basis for K^n .

(Hint: you may assume that the familiar result which says that rows or columns of a square matrix are linearly independent iff matrix is invertible extends to matrices over general fields K.)

Solution:

- (a) Suppose that there are $a_1, \ldots, a_n \in K$ such that $a_1e_1 + \cdots + a_ne_n = 0$. Then we have $(a_1, a_2, \ldots, a_n) = 0$, so $a_1 = a_2 = \cdots = a_n = 0$. Hence B_1 is linearly independent. To show that B_1 spans K^n , consider $v \in K^n$. Then $v = (v_1, \ldots, v_n)$ for some $v_i \in K$. Therefore $v = v_1e_1 + \cdots + v_ne_n$.
- (b) Suppose that there are $a_1, \ldots, a_n \in K$ such that $a_1f_1 + \cdots + a_nf_n = 0$. Then we have

$$(a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_n) = 0.$$

Equivalently we can write

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Since the determinant of this $n \times n$ matrix A is 1, it is invertible, so it follows that $a_1 = a_2 = \cdots = a_n = 0$. Hence B_2 is linearly independent. One way to show that B_2 spans K_n is to let $B' = B_2 \cup \{v\}$ for some $v = (v_1, \ldots, v_n) \in K^n$ and find $b_1, \ldots, b_n \in K$ such that $v = b_1 f_1 + \cdots + b_n f_n$ (this would show that B_2 is a maximal linearly independent set and hence spans the entire space). Equivalently, we want $b_1, \ldots, b_n \in K$ such that

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

We can solve for such b_i by multiplying each side by A^{-1} . Hence B' is linearly dependent, so B_2 is maximal.

(3) (3 pts/part) Find an infinite linearly independent subset of the following vector spaces. No proof is required.
(a) ℝ over ℚ.

- (b) K(t) over K, where K is a field and t is an indeterminate.
- (c) K^S over K, where K is a field and S is an infinite set.

Solution:

(a) $B = \{\sqrt{p} : p \text{ is prime}\}$ (b) $B = \{t^n : n \in \mathbb{Z}_{\geq 0}\}$ (c) $B = \{f_t : t \in S\}$, where $f_t : S \to K$ is defined by

$$f_t(s) = \begin{cases} 0 & \text{if } s \neq t, \\ 1 & \text{if } s = t, \end{cases}$$

for all $s \in S$.

- (4) (3 pts/part) Compute the degree [L: K] for each of the field extensions below, and exhibit a basis for L as a vector space over K if the degree is finite.
 - (a) $\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}$
 - (b) $\mathbb{R}(\sqrt[5]{2}):\mathbb{R}$
 - (c) $\mathbb{Q}(e^{2\pi i/5}):\mathbb{Q}$
 - (d) $\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{3})$
 - (e) ℂ: ℚ

Solution:

- (a) The extension has degree 3 with basis $B = \{1, \sqrt[3]{5}, \sqrt[3]{25}\}$.
- (b) The extension has degree 1 with basis $B = \{1\}$.
- (c) The extension has degree 4 with basis $B = \{1, e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}\}.$
- (d) The extension has degree 2 with basis $B = \{1, \sqrt{5}\}$.
- (e) The extension has infinite degree.

(5) Use the Tower Law for the following.

(a) (5 pts) Prove that, if L: K is a field extension with [L: K] = 1, then L = K. (Hint: Show that $K \subseteq L$ and $L \subseteq K$.)

Remark: We have already used this result in case of simple extensions $K(\alpha)$: K in class. The proof in that case is that if the degree of this extension is 1, then the degree of the monic minimal polynomial over K for α is 1, i.e. the polynomial must be $x - \alpha$, which means that α is in K.

(b) (3 pts) If [L: K] is a prime integer, prove that there are no intermediate fields M strictly between L and K.

Solution:

- (a) Suppose that [L: K] = 1. Clearly $K \subseteq L$. Let $B = \{e\}$ be a basis of L: K. We claim that $e \in K$. Indeed, if $\alpha \in K^*$, then $\alpha \in L$, so there is $\beta \in K$ such that $\alpha = \beta e$. Clearly $\beta \neq 0$, so $e = \alpha/\beta$. Therefore $e \in K$. Now for all $\gamma \in L$, there is $\delta \in K$ such that $\gamma = \delta e$, so $\gamma \in K$. Therefore $L \subseteq K$, as required.
- (b) Let [L: K] be prime. Suppose that M is a field with $K \subseteq M \subseteq L$. Then by the Tower Law, we have [L: M] = 1 or [M: K] = 1. So L = M or K = M, so M is not strictly contained between L and K.

(6) (5 pts/part)

- (a) Prove that $B = \{\sqrt{6}, \sqrt{10}\}$ is a linearly independent subset of \mathbb{R} as a vector space over \mathbb{Q} .
- (b) Prove that $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})$: \mathbb{Q} has degree 4 and not 8. Exhibit a basis for this extension.

Solution:

- (a) Suppose that there are $a, b \in \mathbb{Q}$ such that $a\sqrt{6} + b\sqrt{10} = 0$. Suppose that $b \neq 0$. Then $a \neq 0$. Without loss of generality, assume that a and b are coprime integers. Then $6a^2 = 10b^2$, i.e. $3a^2 = 5b^2$. Hence $3|5b^2$, so 3|b. Hence $9|3a^2$, so $3|a^2$. Therefore 3|a, a contradiction. Therefore b = 0, and so a = 0. So $B = \{\sqrt{6}, \sqrt{10}\}$ is a linearly independent subset.
- (b) Since $\sqrt{15} = \frac{\sqrt{60}}{2} \in \mathbb{Q}(\sqrt{6}, \sqrt{10})$, it follows that $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}) = \mathbb{Q}(\sqrt{6}, \sqrt{10})$. Clearly

$$[\mathbb{Q}(\sqrt{6},\sqrt{10}):\mathbb{Q}]=4,$$

so we are done.

- (7) (3 pts/part) The following statements are all false. Provide a counterexample or a counterproof. Recall that an extension L: K is finite if the degree [L: K] is finite.
 - (a) Every field extension of \mathbb{R} is a finite extension.
 - (b) Every field extension of a finite field is a finite extension.
 - (c) There is some element of \mathbb{C} that is transcendental over \mathbb{R} .
 - (d) If K is a field, then every algebraic extension of K is finite.
 - (e) For all $n \in \mathbb{Z}_{>2}$, there are no intermediate fields properly between $\mathbb{Q}(\sqrt[n]{2})$ and \mathbb{Q} .

Solution:

- (a) If t is an indeterminate, then $\mathbb{R}(t)$ is an infinite extension of \mathbb{R} .
- (b) If t is an indeterminate, then $\mathbb{Z}_2(t)$ is an infinite extension of \mathbb{Z}_2 .
- (c) Note that $[\mathbb{C}:\mathbb{R}] = 2$ which is prime. Hence for any $\alpha \in \mathbb{C}$, we have $[\mathbb{R}(\alpha):\mathbb{R}] = 1$ or 2. Therefore α is algebraic over \mathbb{R} .
- (d) The extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$: \mathbb{Q} is algebraic but infinite.
- (e) The field $\mathbb{Q}(\sqrt{2})$ is lies properly between $\mathbb{Q}(\sqrt[4]{2})$ and \mathbb{Q} .
- (8) (5 pts/part)
 - (a) Suppose that [L: K] is a prime number. Prove that L: K is a simple extension, i.e. there is $\alpha \in L$ such that $L = K(\alpha)$. (Hint: Look at an earlier problem.)
 - (b) Let L: K be a finite extension, and let p be an irreducible polynomial in K[x] with $\deg p \ge 2$. Prove by contradiction that, if $\deg p$ and [L: K] are coprime, then p has no zeros in L. (Hint: If $\alpha \in L$ is a root of p, then consider the field $K(\alpha)$.)

Solution:

- (a) Suppose that [L: K] = p is prime and let $\alpha \in L \setminus K$. Then $[K(\alpha): K]$ divides [L: K], so $[K(\alpha): K] = 1$ or p. Since $K(\alpha) \neq K$, it follows that $[K(\alpha): K] = p$ and so $[L: K(\alpha)] = 1$. Therefore $L = K(\alpha)$ and L is a simple extension of K.
- (b) Suppose that $\alpha \in L$ is a root of p. Then $[K(\alpha): K]$ divides [L: K]. But $[K(\alpha): K] = \deg p$, so $\deg p$ divides [L: K]. Since these numbers are assumed to be coprime, it follows that $\deg p = 1$, a contradiction.
- (9) (5 pts/part) We say that a rational number a is a square in \mathbb{Q} if there is $b \in \mathbb{Q}$ such that $b^2 = a$. Let $m, n \in \mathbb{Q}$ be non-squares. Prove the following.
 - (a) If mn is a square in \mathbb{Q} , then $[\mathbb{Q}(\sqrt{m}, \sqrt{n}):\mathbb{Q}] = 2$.
 - (b) If mn is a non-square in \mathbb{Q} , we have $[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}] = 4$.

Solution:

(a) Suppose that m and n are nonsquares in \mathbb{Q} and suppose that $mn = a^2$ for some $a \in \mathbb{Q}$. Notice that neither m nor n is zero, so we can write $n = \frac{a^2}{m}$, or $\sqrt{n} = \pm \frac{a}{\sqrt{m}}$. Therefore $\sqrt{n} \in \mathbb{Q}(\sqrt{m})$, so

$$[\mathbb{Q}(\sqrt{m},\sqrt{n})\colon\mathbb{Q}]=[\mathbb{Q}(\sqrt{m})\colon\mathbb{Q}]=2.$$

(b) Suppose that mn is a nonsquare, and suppose on the contrary that $[\mathbb{Q}(\sqrt{m},\sqrt{n}):\mathbb{Q}] = 2$. Since $\mathbb{Q}(\sqrt{m},\sqrt{n}) = (\mathbb{Q}(\sqrt{m}))(\sqrt{n})$, it follows that

$$[\mathbb{Q}(\sqrt{m},\sqrt{n}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{m},\sqrt{n}):\mathbb{Q}(\sqrt{m})][\mathbb{Q}(\sqrt{m}):\mathbb{Q}].$$

Since $[\mathbb{Q}(\sqrt{m}):\mathbb{Q}] = 2$, it follows that $[\mathbb{Q}(\sqrt{m},\sqrt{n}):\mathbb{Q}(\sqrt{m})] = 1$, so $\sqrt{n} \in \mathbb{Q}(\sqrt{m})$, i.e. $\sqrt{n} = a + b\sqrt{m}$ for some $a, b \in \mathbb{Q}$. Therefore $a^2 = (\sqrt{n} - b\sqrt{m})^2 = n + bm^2 - 2b\sqrt{mn}$. Therefore mn is a square in \mathbb{Q} , a contradiction.

(10) (5 pts) Suppose that M: L: K is a tower of field extensions and let $\alpha \in M$ be algebraic over L. Assume that $[K(\alpha): K]$ and [L: K] are relatively prime. Prove that the minimum polynomial m_{α}^{L} of α over L actually has its coefficients in K.

Solution: Let $m = \deg m_{\alpha}^{K} = [K(\alpha): K]$ and n = [L: K] and $m' = \deg m_{\alpha}^{L} = [L(\alpha): L]$. The hypotheses give (m, n) = 1. We certainly know that $m' \leq m$ and $m_{\alpha}^{L} | m_{\alpha}^{K}$. Hence $[L(\alpha): K] = m'n \leq mn$. However it is clear that both m and n divide $[L(\alpha): K]$, and since they are relatively prime we must have $mn = [L(\alpha): K]$. In particular m = m' and therefore $m_{\alpha}^{L} = m_{\alpha}^{K}$, so m_{α}^{L} is really a polynomial with coefficients in K.