Math 306, Spring 2012

Homework 5 Solutions

(1) (a) (3 pts) Find a linearly dependent set of three vectors in \mathbb{R}^{3}, but such that any set of two of them is linearly independent.
(b) (5 pts) Let V be a vector space over \mathbb{C}. Suppose that $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent subset of V. Prove that the set $B^{\prime}=\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{1}+v_{3}\right\}$ is a linearly independent subset of V.

Solution:

(a) Take, for example, $\{(1,0,0),(0,1,0),(1,1,0)\}$
(b) Suppose that there are $c_{1}, c_{2}, c_{2} \in \mathbb{C}$ such that $c_{1}\left(v_{1}+v_{2}\right)+c_{2}\left(v_{2}+v_{3}\right)+c_{3}\left(v_{1}+v_{3}\right)=0$. Then $\left(c_{1}+c_{3}\right) v_{1}+\left(c_{1}+c_{2}\right) v_{2}+\left(c_{2}+c_{3}\right) v_{3}=0$. Since $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, we conclude that $c_{1}+c_{3}=0, c_{1}+c_{2}=0$ and $c_{2}+c_{3}=0$. Then we can write

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Since the determinant of this 3×3 matrix is 2 , it is invertible, so

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

as required.
(2) ($5 \mathrm{pts} / \mathrm{part}$) Let K be a field and let K^{n} be the vector space of n-tuples over K. For all $j \in\{1, \ldots, n\}$, let

$$
e_{j}=(0, \ldots, 0,1,0, \ldots, 0, \ldots, 0),
$$

where the 1 occurs in the j-th position. Let $f_{j}=e_{1}+\cdots+e_{j}$ for all $j \in\{1, \ldots, n\}$.
(a) Prove that $B_{1}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for K^{n}.
(b) Prove that $B_{2}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a basis for K^{n}.
(Hint: you may assume that the familiar result which says that rows or columns of a square matrix are linearly independent iff matrix is invertible extends to matrices over general fields K.)

Solution:

(a) Suppose that there are $a_{1}, \ldots, a_{n} \in K$ such that $a_{1} e_{1}+\cdots+a_{n} e_{n}=0$. Then we have $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$, so $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence B_{1} is linearly independent. To show that B_{1} spans K^{n}, consider $v \in K^{n}$. Then $v=\left(v_{1}, \ldots, v_{n}\right)$ for some $v_{i} \in K$. Therefore $v=v_{1} e_{1}+\cdots+v_{n} e_{n}$.
(b) Suppose that there are $a_{1}, \ldots, a_{n} \in K$ such that $a_{1} f_{1}+\cdots+a_{n} f_{n}=0$. Then we have

$$
\left(a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{n}\right)=0 .
$$

Equivalently we can write

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Since the determinant of this $n \times n$ matrix A is 1 , it is invertible, so it follows that $a_{1}=a_{2}=\cdots=a_{n}=0$. Hence B_{2} is linearly independent. One way to show that B_{2} spans K_{n} is to let $B^{\prime}=B_{2} \cup\{v\}$ for some $v=\left(v_{1}, \ldots, v_{n}\right) \in K^{n}$ and find $b_{1}, \ldots, b_{n} \in K$ such that $v=b_{1} f_{1}+\cdots+b_{n} f_{n}$ (this would show that B_{2} is a maximal linearly independent set and hence spans the entire space). Equivalently, we want $b_{1}, \ldots, b_{n} \in K$
such that

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

We can solve for such b_{i} by multiplying each side by A^{-1}. Hence B^{\prime} is linearly dependent, so B_{2} is maximal.
(3) (3 pts/part) Find an infinite linearly independent subset of the following vector spaces. No proof is required.
(a) \mathbb{R} over \mathbb{Q}.
(b) $K(t)$ over K, where K is a field and t is an indeterminate.
(c) K^{S} over K, where K is a field and S is an infinite set.

Solution:

(a) $B=\{\sqrt{p}: p$ is prime $\}$
(b) $B=\left\{t^{n}: n \in \mathbb{Z}_{\geq 0}\right\}$
(c) $B=\left\{f_{t}: t \in S\right\}$, where $f_{t}: S \rightarrow K$ is defined by

$$
f_{t}(s)=\left\{\begin{array}{lll}
0 & \text { if } & s \neq t \\
1 & \text { if } & s=t
\end{array}\right.
$$

for all $s \in S$.
(4) (3 pts/part) Compute the degree $[L: K]$ for each of the field extensions below, and exhibit a basis for L as a vector space over K if the degree is finite.
(a) $\mathbb{Q}(\sqrt[3]{5}): \mathbb{Q}$
(b) $\mathbb{R}(\sqrt[5]{2}): \mathbb{R}$
(c) $\mathbb{Q}\left(e^{2 \pi i / 5}\right): \mathbb{Q}$
(d) $\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{3})$
(e) $\mathbb{C}: \mathbb{Q}$

Solution:

(a) The extension has degree 3 with basis $B=\{1, \sqrt[3]{5}, \sqrt[3]{25}\}$.
(b) The extension has degree 1 with basis $B=\{1\}$.
(c) The extension has degree 4 with basis $B=\left\{1, e^{2 \pi i / 5}, e^{4 \pi i / 5}, e^{6 \pi i / 5}\right\}$.
(d) The extension has degree 2 with basis $B=\{1, \sqrt{5}\}$.
(e) The extension has infinite degree.
(5) Use the Tower Law for the following.
(a) (5 pts) Prove that, if $L: K$ is a field extension with $[L: K]=1$, then $L=K$. (Hint: Show that $K \subseteq L$ and $L \subseteq K$.)
Remark: We have already used this result in case of simple extensions $K(\alpha): K$ in class. The proof in that case is that if the degree of this extension is 1 , then the degree of the monic minimal polynomial over K for α is 1 , i.e. the polynomial must be $x-\alpha$, which means that α is in K.
(b) (3 pts) If $[L: K]$ is a prime integer, prove that there are no intermediate fields M strictly between L and K.

Solution:

(a) Suppose that $[L: K]=1$. Clearly $K \subseteq L$. Let $B=\{e\}$ be a basis of L : K. We claim that $e \in K$. Indeed, if $\alpha \in K^{*}$, then $\alpha \in L$, so there is $\beta \in K$ such that $\alpha=\beta e$. Clearly $\beta \neq 0$, so $e=\alpha / \beta$. Therefore $e \in K$. Now for all $\gamma \in L$, there is $\delta \in K$ such that $\gamma=\delta e$, so $\gamma \in K$. Therefore $L \subseteq K$, as required.
(b) Let $[L: K]$ be prime. Suppose that M is a field with $K \subseteq M \subseteq L$. Then by the Tower Law, we have $[L: M]=1$ or $[M: K]=1$. So $L=M$ or $K=M$, so M is not strictly contained between L and K.
(6) (5 pts/part)
(a) Prove that $B=\{\sqrt{6}, \sqrt{10}\}$ is a linearly independent subset of \mathbb{R} as a vector space over \mathbb{Q}.
(b) Prove that $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})$: \mathbb{Q} has degree 4 and not 8 . Exhibit a basis for this extension.

Solution:

(a) Suppose that there are $a, b \in \mathbb{Q}$ such that $a \sqrt{6}+b \sqrt{10}=0$. Suppose that $b \neq 0$. Then $a \neq 0$. Without loss of generality, assume that a and b are coprime integers. Then $6 a^{2}=10 b^{2}$, i.e. $3 a^{2}=5 b^{2}$. Hence $3 \mid 5 b^{2}$, so $3 \mid b$. Hence $9 \mid 3 a^{2}$, so $3 \mid a^{2}$. Therefore $3 \mid a$, a contradiction. Therefore $b=0$, and so $a=0$. So $B=\{\sqrt{6}, \sqrt{10}\}$ is a linearly independent subset.
(b) Since $\sqrt{15}=\frac{\sqrt{60}}{2} \in \mathbb{Q}(\sqrt{6}, \sqrt{10})$, it follows that $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})=\mathbb{Q}(\sqrt{6}, \sqrt{10})$. Clearly

$$
[\mathbb{Q}(\sqrt{6}, \sqrt{10}): \mathbb{Q}]=4,
$$

so we are done.
(7) (3 pts/part) The following statements are all false. Provide a counterexample or a counterproof. Recall that an extension $L: K$ is finite if the degree $[L: K]$ is finite.
(a) Every field extension of \mathbb{R} is a finite extension.
(b) Every field extension of a finite field is a finite extension.
(c) There is some element of \mathbb{C} that is transcendental over \mathbb{R}.
(d) If K is a field, then every algebraic extension of K is finite.
(e) For all $n \in \mathbb{Z}_{\geq 2}$, there are no intermediate fields properly between $\mathbb{Q}(\sqrt[n]{2})$ and \mathbb{Q}.

Solution:

(a) If t is an indeterminate, then $\mathbb{R}(t)$ is an infinite extension of \mathbb{R}.
(b) If t is an indeterminate, then $\mathbb{Z}_{2}(t)$ is an infinite extension of \mathbb{Z}_{2}.
(c) Note that $[\mathbb{C}: \mathbb{R}]=2$ which is prime. Hence for any $\alpha \in \mathbb{C}$, we have $[\mathbb{R}(\alpha): \mathbb{R}]=1$ or 2 . Therefore α is algebraic over \mathbb{R}.
(d) The extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots): \mathbb{Q}$ is algebraic but infinite.
(e) The field $\mathbb{Q}(\sqrt{2})$ is lies properly between $\mathbb{Q}(\sqrt[4]{2})$ and \mathbb{Q}.
(8) (5 pts/part)
(a) Suppose that $[L: K]$ is a prime number. Prove that $L: K$ is a simple extension, i.e. there is $\alpha \in L$ such that $L=K(\alpha)$. (Hint: Look at an earlier problem.)
(b) Let L : K be a finite extension, and let p be an irreducible polynomial in $K[x]$ with $\operatorname{deg} p \geq 2$. Prove by contradiction that, if $\operatorname{deg} p$ and $[L: K]$ are coprime, then p has no zeros in L. (Hint: If $\alpha \in L$ is a root of p, then consider the field $K(\alpha)$.)

Solution:

(a) Suppose that $[L: K]=p$ is prime and let $\alpha \in L \backslash K$. Then $[K(\alpha): K]$ divides $[L: K]$, so $[K(\alpha): K]=1$ or p. Since $K(\alpha) \neq K$, it follows that $[K(\alpha): K]=p$ and so $[L: K(\alpha)]=1$. Therefore $L=K(\alpha)$ and L is a simple extension of K.
(b) Suppose that $\alpha \in L$ is a root of p. Then $[K(\alpha): K]$ divides $[L: K]$. But $[K(\alpha): K]=\operatorname{deg} p$, so $\operatorname{deg} p$ divides $[L: K]$. Since these numbers are assumed to be coprime, it follows that $\operatorname{deg} p=1$, a contradiction.
(9) (5 pts/part) We say that a rational number a is a square in \mathbb{Q} if there is $b \in \mathbb{Q}$ such that $b^{2}=a$. Let $m, n \in \mathbb{Q}$ be non-squares. Prove the following.
(a) If $m n$ is a square in \mathbb{Q}, then $[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}]=2$.
(b) If $m n$ is a non-square in \mathbb{Q}, we have $[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}]=4$.

Solution:

(a) Suppose that m and n are nonsquares in \mathbb{Q} and suppose that $m n=a^{2}$ for some $a \in \mathbb{Q}$. Notice that neither m nor n is zero, so we can write $n=\frac{a^{2}}{m}$, or $\sqrt{n}= \pm \frac{a}{\sqrt{m}}$. Therefore $\sqrt{n} \in \mathbb{Q}(\sqrt{m})$, so

$$
[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{m}): \mathbb{Q}]=2
$$

(b) Suppose that $m n$ is a nonsquare, and suppose on the contrary that $[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}]=2$. Since $\mathbb{Q}(\sqrt{m}, \sqrt{n})=(\mathbb{Q}(\sqrt{m}))(\sqrt{n})$, it follows that

$$
[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}(\sqrt{m})][\mathbb{Q}(\sqrt{m}): \mathbb{Q}] .
$$

Since $[\mathbb{Q}(\sqrt{m}): \mathbb{Q}]=2$, it follows that $[\mathbb{Q}(\sqrt{m}, \sqrt{n}): \mathbb{Q}(\sqrt{m})]=1$, so $\sqrt{n} \in \mathbb{Q}(\sqrt{m})$, i.e. $\sqrt{n}=a+b \sqrt{m}$ for some $a, b \in \mathbb{Q}$. Therefore $a^{2}=(\sqrt{n}-b \sqrt{m})^{2}=n+b m^{2}-2 b \sqrt{m n}$. Therefore $m n$ is a square in \mathbb{Q}, a contradiction.
(10) (5 pts) Suppose that $M: L: K$ is a tower of field extensions and let $\alpha \in M$ be algebraic over L. Assume that $[K(\alpha): K]$ and $[L: K]$ are relatively prime. Prove that the minimum polynomial m_{α}^{L} of α over L actually has its coefficients in K.
Solution: Let $m=\operatorname{deg} m_{\alpha}^{K}=[K(\alpha): K]$ and $n=[L: K]$ and $m^{\prime}=\operatorname{deg} m_{\alpha}^{L}=[L(\alpha): L]$. The hypotheses give $(m, n)=1$. We certainly know that $m^{\prime} \leq m$ and $m_{\alpha}^{L} \mid m_{\alpha}^{K}$. Hence $[L(\alpha): K]=m^{\prime} n \leq m n$. However it is clear that both m and n divide $[L(\alpha): K]$, and since they are relatively prime we must have $m n=[L(\alpha): K]$. In particular $m=m^{\prime}$ and therefore $m_{\alpha}^{L}=m_{\alpha}^{K}$, so m_{α}^{L} is really a polynomial with coefficients in K.

