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Math 306, Spring 2012
Homework 7 Solutions

We say that a field L is algebraically closed if every f € L[x] splits over L. We know, for example, that C is
algebraically closed. We say that L: K is an algebraic closure of K if L: K is algebraic and L is algebraically
closed. Prove that the following are equivalent about an extension L: K.

(a) The extension L: K is an algebraic closure of K;

(b) The extension L: K is algebraic, and every irreducible f € K|x] splits over L;

(c) The extension L: K is algebraic, and if L': L is algebraic then L = L.

Solution: (1 implies 2) Suppose that L: K is an algebraic closure. By definition it is algebraic. Let f € K|[z]
be irreducible. Then f € L[z] so it splits by assumption. Hence f splits over L.

(2 implies 3) Suppose that L’: L is algebraic. Clearly L C L'. Let a € L'. Since L’: K is algebraic, there is
an irreducible polynomial m € K[x] that has « as a zero. By assumption m splits over L. Therefore o € L, so
L' C L.

(3 implies 1) We know that L: K is algebraic. Let f € L[z]. Let L’ be the splitting field of f over L. Then
L’: L is algebraic. By assumption we have L = L’. Hence f splits over L.

Construct the normal closures N for the following extensions.
(a) Q(v2,v3): Q
(b) Q(V3): Q

(c) Zs(t): Zs, where t is an indeterminate.

Solution:

(a) O(V3.V3)
(b) Q(V3, ")
(c) Zs(t)

For each of these algebraic extensions, find the normal closure M and determine an appropriate collection .S for

which M is the splitting field over K (this means that each polynomial in the collection splits in M).

(a) Q(V2,V3,v5,V7,...): Q

(b) Q(e2m/3, 2mi/5 (2mi/T o2mi/11 . Q

(c) Q(V2,V2,72,...): Q

Solution:

(a) The normal closure is Q(v/2,v/3,v5,v/7,...) and S = {2? — 2,22 — 3,22 - 5,22 - 7,...}

(b) The normal closure is Q(e2/3, 2mi/5 ¢2mi/T ¢2m/11 ") and the corresponding S is given by S = {z% —
Lz’ —1,2" — 1,z —1,...}.

(c) The normal closure is Q(v/2, V/2,e?™/3,/2,e>™/5 . ) and S = {z? — 2,23 — 2,2° — 2,.. .}

Each of the following statements is false. Disprove each of them by providing a counterexample or a counterproof.

(a) Every finite extension is separable.

(b) Every normal extension L: K is the splitting field of some polynomial f € K|[x].

(c) For all fields K, if f € K[z] and Df =0, then f =0.

(d) Every separable extension is normal.

(e) Every normal extension is separable.

Solution:

(a) Consider Zg(u)(t): Za(u), where t is a root of 22 — u € Za(u)[x]. This finite extension is not separable.
(b) The extension Q(t): Q is not the splitting field of any polynomial in Q[z].

(c) Let K = Zy. Then f = 22 is not zero but Df = 0.

(d) The extension Q(4/2): Q is separable but not normal.
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(e) The extension Zo(u)(t): Za(u), where t is a root of 22 — u € Zg(u)[z], is normal but not separable.

Suppose that L: K is an algebraic extension. Prove that there is a greatest intermediate field M for which
M : K is normal (assume there is at least one such M). In your proof, you should give a definition of the notion
of “greatest”.

Solution: For all o in some indexing set I, let M, be an intermediate subfield of L: K which is normal over K.
Certainly I is nonempty because K is normal over itself. Let M be the intersection of all subfields of L that
contain all the M,. We claim that M is also normal over K. For each a € I, let S, C K[z] be a collection of
polynomial for which M, is the splitting field. Let N be the splitting field of S = (J c; So. We will show that
M = N. Certainly N contains all the M, by the minimality of M. Therefore N contains M by the minimality
of M. But certainly the polynomials of S split over M, so by the minimality of N we have N C M. Therefore
N = M and M is normal over K.

Let L: K be an algebraic field extension and let M; and My be intermediate fields normal over K. Define
K (M, My) to be the smallest subfield of L containing both M; and Mj. Prove that both K (M, Ms): K and
My N Ms: K are normal extensions.

Solution: The proof of the first part is practically identical to the proof of the last problem. Now let f € K|[z]
be irreducible with a root o« in My N My. Then o € M. Since M;: K is normal, all the roots of f lie in M.
Similarly, all the roots of f lie in Ms. Therefore My N M contains all the roots of f, and is therefore normal
over K.

Suppose that f is a polynomial in K[z] of degree n and either char K = 0 or char K > n. Suppose that « € K.
Prove that )
D D"
f=fla)+Df(a)(x — ) + ;(a) (x—a)+-- + j;(a) (x —a)".

(Hint: Proceed by induction on n, using the following fact: If f has degree k + 1, then « is a root of the
polynomial f — f(«a), so f — f(a) = (z — «)g, for some g of degree k.)

Solution: Certainly the statement is true when n. = 0, in which case f is just a constant function, so f = f(«).
Suppose that the statement is true for any polynomial of degree k. Let f € K|[x] with degree k + 1. Then
a is a root of the polynomial f — f(«), so f — f(a) = (z — «)g, for some g of degree k. By the induction
hypothesis, we know that

g=g(a)+ Dg(a)(z —a) + ng!(a) (x—a)’+ -+ Dklg!(a) (x — a)k
Therefore
2g( kg(a
f = fla)+g(a)(z — a) + Dg(a)(z — a)* + Dg‘() (x—a)®+--+ D Z‘( ) (z — o)kt

It suffices to show that, for all i = 1,... k, we have Dilg.!(a) :DE;{)(,&) or (2 +1)Dg(a) = D™ f(a). We
claim that, for all i € {1,...,k}, we have D1 f = (i + 1)D’g + (x — a)D"*1g. We proceed by induction.
Clearly since f = f(a) + (¥ — a)g, we have Df = g+ (z — ) Df, so the statement is true for i = 0. Assume
that, for some j € {0,...,k — 1}, we have DI f = (j +1)D’g + (x — a)D’T1g. Hence
DIt f = (j+1)DMg+ Ditlg 4 (z —a)D'Hy
= (+2)D" g+ (z — a) D'y
Hence the equation is true for all i. Therefore D! f(a) = (i + 1)D’g(«), as desired.

Suppose that f is a polynomial in K[z] of degree n and either char K = 0 or char K > n. Prove that « is a
root of multiplicity r iff

fla)=Df(a)=--=D""f(a) =0



and D" f(«) # 0. (Hint: Proceed by induction on r.)
Solution: Suppose that o has multiplicity . Then f = (x — «)"g for some g € K[x] with g(a) # 0. For all 1,

we have
Dif = Z( >Dj (z —a)"Dg.

Now DI(z —a)" =r(r—1)---(r+1—7)2" 7. Hence Df(a) =0 if i <r and

D' f= Z( )DJ (x—a) D' g.

Therefore D" f(a) = (r 4+ 1)!g(a) # 0.

To prove the converse, proceed by induction on r. Certainly the statement is true if » = 1. In this
case f(a) = 0 and Df(a) # 0. Then f = (x — a)g for some g € K[z] and Df = g+ (x — a)Dg, so
g(a) = Df(a) # 0, so f has multiplicity 1. Suppose that the statement is true for » = k. Suppose that

fla)=Df(a)=---=D"'f(a)=0 and DFf(a)#D0.
Then for all @ € Z>1, we have
Dif =iD" g+ (z — a)D'g
(see the previous problem). Hence for i = 1,...,k — 1, we have g(a) = Dg(a) = --- = D*2g(a) and
D*1g(a) # 0. By induction we know that g has a root « of multiplicity k — 1. Since f = (z — a)g, we know
that f has a root « of multiplicity k.

(9) (a) Show that, if f € K[z] is irreducible and the characteristic of K is p for some prime p, then f is inseparable
iff f=ao+a] + -+ a,z"™ for some n € Z>1 and ag,...,a, € K.
(b) Suppose that L: K is a field extension and char K = p > 0. If [L: K] is coprime to p, then prove that
L: K is separable.
(c) We say that a field K is perfect if every irreducible f € KJz] is separable. Prove that any algebraic
extension of a perfect field is also perfect.

Solution:
(a) If f is inseparable, then there is m € K[x] with degm > such that m|f and m|Df. But f is irreducible,
so f and m are associates, so f|Df, so Df =0 and f has the form given above. Conversely is obvious:

take m = f.
(b) Suppose that L: K is inseparable. Then there is an € L whose minimal polynomial is of the form
f =ag+ a1aP + axx® + - - + a,a™P, for some n € Z>1 and ag,...,a, € K. Since f is irreducible, we

know that K(«): K has degree np. Therefore [L: K] is divisible by np, and hence divisible by p (we are
assuming that the extension is finite), contradicting the fact that [L: K] is coprime to p.

(c) Let L: K be an algebraic extension and let K be perfect. Let f € L[z| be irreducible with splitting field
M. Consider a root a; € M of f. Hence f is the minimum polynomial of oy over L. Since L: K is
algebraic, we know that « is algebraic over K. Let g be the minimum polynomial of a1 over K. Then
flg. Since K is perfect, the polynomial g is separable, so g = (z — 1) - - - (x — ) in M[z], where all the
«a; are distinct. Then f splits in M|[z] into a product of distinct linear factors as well, so f is separable.
Therefore L is perfect.



