
Math 306, Spring 2012

Homework 7 Solutions

(1) We say that a field L is algebraically closed if every f ∈ L[x] splits over L. We know, for example, that C is
algebraically closed. We say that L : K is an algebraic closure of K if L : K is algebraic and L is algebraically
closed. Prove that the following are equivalent about an extension L : K.
(a) The extension L : K is an algebraic closure of K;
(b) The extension L : K is algebraic, and every irreducible f ∈ K[x] splits over L;
(c) The extension L : K is algebraic, and if L′ : L is algebraic then L = L′.

Solution: (1 implies 2) Suppose that L : K is an algebraic closure. By definition it is algebraic. Let f ∈ K[x]
be irreducible. Then f ∈ L[x] so it splits by assumption. Hence f splits over L.

(2 implies 3) Suppose that L′ : L is algebraic. Clearly L ⊆ L′. Let α ∈ L′. Since L′ : K is algebraic, there is
an irreducible polynomial m ∈ K[x] that has α as a zero. By assumption m splits over L. Therefore α ∈ L, so
L′ ⊆ L.

(3 implies 1) We know that L : K is algebraic. Let f ∈ L[x]. Let L′ be the splitting field of f over L. Then
L′ : L is algebraic. By assumption we have L = L′. Hence f splits over L.

(2) Construct the normal closures N for the following extensions.
(a) Q(

√
2,
√
3) : Q

(b) Q( 5
√
3) : Q

(c) Z3(t) : Z3, where t is an indeterminate.

Solution:
(a) Q(

√
2,
√
3)

(b) Q( 5
√
3, e2πi/5)

(c) Z3(t)

(3) For each of these algebraic extensions, find the normal closure M and determine an appropriate collection S for
which M is the splitting field over K (this means that each polynomial in the collection splits in M).
(a) Q(

√
2,
√
3,
√
5,
√
7, . . .) : Q

(b) Q(e2πi/3, e2πi/5, e2πi/7, e2πi/11, . . .) : Q
(c) Q(

√
2, 3
√
2, 5
√
2, . . .) : Q

Solution:
(a) The normal closure is Q(

√
2,
√
3,
√
5,
√
7, . . .) and S = {x2 − 2, x2 − 3, x2 − 5, x2 − 7, . . .}

(b) The normal closure is Q(e2πi/3, e2πi/5, e2πi/7, e2πi/11, . . .) and the corresponding S is given by S = {x3 −
1, x5 − 1, x7 − 1, x11 − 1, . . .}.

(c) The normal closure is Q(
√
2, 3
√
2, e2πi/3, 5

√
2, e2πi/5, . . .) and S = {x2 − 2, x3 − 2, x5 − 2, . . .}.

(4) Each of the following statements is false. Disprove each of them by providing a counterexample or a counterproof.
(a) Every finite extension is separable.
(b) Every normal extension L : K is the splitting field of some polynomial f ∈ K[x].
(c) For all fields K, if f ∈ K[x] and Df = 0, then f = 0.
(d) Every separable extension is normal.
(e) Every normal extension is separable.

Solution:
(a) Consider Z2(u)(t) : Z2(u), where t is a root of x2 − u ∈ Z2(u)[x]. This finite extension is not separable.
(b) The extension Q(t) : Q is not the splitting field of any polynomial in Q[x].
(c) Let K = Z2. Then f = x2 is not zero but Df = 0.
(d) The extension Q( 3

√
2) : Q is separable but not normal.



(e) The extension Z2(u)(t) : Z2(u), where t is a root of x2 − u ∈ Z2(u)[x], is normal but not separable.

(5) Suppose that L : K is an algebraic extension. Prove that there is a greatest intermediate field M for which
M : K is normal (assume there is at least one such M). In your proof, you should give a definition of the notion
of “greatest”.

Solution: For all α in some indexing set I, let Mα be an intermediate subfield of L : K which is normal over K.
Certainly I is nonempty because K is normal over itself. Let M be the intersection of all subfields of L that
contain all the Mα. We claim that M is also normal over K. For each α ∈ I, let Sα ⊆ K[x] be a collection of
polynomial for which Mα is the splitting field. Let N be the splitting field of S =

⋃
α∈I Sα. We will show that

M = N . Certainly N contains all the Mα by the minimality of Mα. Therefore N contains M by the minimality
of M . But certainly the polynomials of S split over M , so by the minimality of N we have N ⊆M . Therefore
N =M and M is normal over K.

(6) Let L : K be an algebraic field extension and let M1 and M2 be intermediate fields normal over K. Define
K(M1,M2) to be the smallest subfield of L containing both M1 and M2. Prove that both K(M1,M2) : K and
M1 ∩M2 : K are normal extensions.

Solution: The proof of the first part is practically identical to the proof of the last problem. Now let f ∈ K[x]
be irreducible with a root α in M1 ∩M2. Then α ∈ M1. Since M1 : K is normal, all the roots of f lie in M1.
Similarly, all the roots of f lie in M2. Therefore M1 ∩M2 contains all the roots of f , and is therefore normal
over K.

(7) Suppose that f is a polynomial in K[x] of degree n and either charK = 0 or charK > n. Suppose that α ∈ K.
Prove that

f = f(α) +Df(α)(x− α) + D2f(α)

2!
(x− α)2 + · · ·+ Dnf(α)

n!
(x− α)n.

(Hint: Proceed by induction on n, using the following fact: If f has degree k + 1, then α is a root of the
polynomial f − f(α), so f − f(α) = (x− α)g, for some g of degree k.)

Solution: Certainly the statement is true when n = 0, in which case f is just a constant function, so f = f(α).
Suppose that the statement is true for any polynomial of degree k. Let f ∈ K[x] with degree k + 1. Then
α is a root of the polynomial f − f(α), so f − f(α) = (x − α)g, for some g of degree k. By the induction
hypothesis, we know that

g = g(α) +Dg(α)(x− α) + D2g(α)

2!
(x− α)2 + · · ·+ Dkg(α)

k!
(x− α)k.

Therefore

f = f(α) + g(α)(x− α) +Dg(α)(x− α)2 + D2g(α)

2!
(x− α)3 + · · ·+ Dkg(α)

k!
(x− α)k+1.

It suffices to show that, for all i = 1, . . . , k, we have Dig(α)
i! = Di+1f(α)

(i+1)! , or (i + 1)Dig(α) = Di+1f(α). We

claim that, for all i ∈ {1, . . . , k}, we have Di+1f = (i + 1)Dig + (x − α)Di+1g. We proceed by induction.
Clearly since f = f(α) + (x− α)g, we have Df = g + (x− α)Df , so the statement is true for i = 0. Assume
that, for some j ∈ {0, . . . , k − 1}, we have Dj+1f = (j + 1)Djg + (x− α)Dj+1g. Hence

Dj+2f = (j + 1)Dj+1g +Dj+1g + (x− α)Dj+2g

= (j + 2)Dj+1g + (x− α)Dj+2g.

Hence the equation is true for all i. Therefore Di+1f(α) = (i+ 1)Dig(α), as desired.

(8) Suppose that f is a polynomial in K[x] of degree n and either charK = 0 or charK > n. Prove that α is a
root of multiplicity r iff

f(α) = Df(α) = · · · = Dr−1f(α) = 0



and Drf(α) 6= 0. (Hint: Proceed by induction on r.)

Solution: Suppose that α has multiplicity r. Then f = (x− α)rg for some g ∈ K[x] with g(α) 6= 0. For all i,
we have

Dif =
i∑

j=0

(
i

j

)
Dj(x− α)rDi−jg.

Now Dj(x− α)r = r(r − 1) · · · (r + 1− j)xr−j . Hence Dif(α) = 0 if i ≤ r and

Drf =
r∑
j=0

(
r

j

)
Dj(x− α)rDr−jg.

Therefore Drf(α) = (r + 1)!g(α) 6= 0.
To prove the converse, proceed by induction on r. Certainly the statement is true if r = 1. In this

case f(α) = 0 and Df(α) 6= 0. Then f = (x − α)g for some g ∈ K[x] and Df = g + (x − α)Dg, so
g(α) = Df(α) 6= 0, so f has multiplicity 1. Suppose that the statement is true for r = k. Suppose that

f(α) = Df(α) = · · · = Dk−1f(α) = 0 and Dkf(α) 6= 0.

Then for all i ∈ Z≥1, we have
Dif = iDi−1g + (x− α)Dig

(see the previous problem). Hence for i = 1, . . . , k − 1, we have g(α) = Dg(α) = · · · = Dk−2g(α) and
Dk−1g(α) 6= 0. By induction we know that g has a root α of multiplicity k − 1. Since f = (x− α)g, we know
that f has a root α of multiplicity k.

(9) (a) Show that, if f ∈ K[x] is irreducible and the characteristic of K is p for some prime p, then f is inseparable
iff f = a0 + ap1 + · · ·+ anx

np for some n ∈ Z≥1 and a0, . . . , an ∈ K.
(b) Suppose that L : K is a field extension and charK = p > 0. If [L : K] is coprime to p, then prove that

L : K is separable.
(c) We say that a field K is perfect if every irreducible f ∈ K[x] is separable. Prove that any algebraic

extension of a perfect field is also perfect.

Solution:
(a) If f is inseparable, then there is m ∈ K[x] with degm ≥ such that m|f and m|Df . But f is irreducible,

so f and m are associates, so f |Df , so Df = 0 and f has the form given above. Conversely is obvious:
take m = f .

(b) Suppose that L : K is inseparable. Then there is an α ∈ L whose minimal polynomial is of the form
f = a0 + a1x

p + a2x
2p + · · · + anx

np, for some n ∈ Z≥1 and a0, . . . , an ∈ K. Since f is irreducible, we
know that K(α) : K has degree np. Therefore [L : K] is divisible by np, and hence divisible by p (we are
assuming that the extension is finite), contradicting the fact that [L : K] is coprime to p.

(c) Let L : K be an algebraic extension and let K be perfect. Let f ∈ L[x] be irreducible with splitting field
M . Consider a root α1 ∈ M of f . Hence f is the minimum polynomial of α1 over L. Since L : K is
algebraic, we know that α1 is algebraic over K. Let g be the minimum polynomial of α1 over K. Then
f |g. Since K is perfect, the polynomial g is separable, so g = (x−α1) · · · (x−αn) in M [x], where all the
αi are distinct. Then f splits in M [x] into a product of distinct linear factors as well, so f is separable.
Therefore L is perfect.


